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Abstract. The purpose of this paper is to study the continuity and
uniqueness properties of equilibria for linear exchange economies. We
characterize the sets of utility vectors and initial endowments for which
the equilibrium price is unique and respectively the set for which the
equilibrium allocation is unique. We show that the equilibrium alloca-
tion correspondence is continuous with respect to the initial endow-
ments and we characterize the set of full measure where the equilibrium
allocation correspondence with respect to the initial endowments and
utility vectors is continuous.
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1. Introduction

Linear exchange economies have been studied extensively (see Refs. 1–
6). Economies with agents having preferences representable by linear utility
functions constitute a basic model. The standard approach in the literature
considers differentiable strictly quasiconcave utility functions with a bound-
ary condition which, roughly speaking, means that the indifference curves
do not cut the boundary of the consumption set. This implies that each
commodity is necessary for each consumer whatever are the prices and his
income. This is a relatively strong condition and the study of linear econom-
ies appear as a natural simple setting to remove both the strict quasi-
concavity condition and the boundary condition.
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Linear economies are also interesting, since they generate strong results
which are different from those obtained by the standard approach, and the
simple parametrization of the utility functions allows us to consider them
as variables whereas they are usually fixed. Moreover, on account of the
strong properties of the linear model, it allows for gaining some insight and
therefore is a valuable complement. The uniqueness of the equilibrium price
vector under a strong survival assumption for only one consumer and the
unique utility level at equilibrium (Ref. 3) are two examples of properties
which cannot be obtained in the standard approach via assumptions involv-
ing only the fundamentals of the economy. These uniqueness properties can
be used in order to define an equilibrium in the setting of imperfect compe-
tition models. For example, in Bonnisseau–Florig (Ref. 7), the uniqueness
of equilibrium prices together with some of the results found in the present
paper and its continuation (Ref. 8) are used in order to analyze oligopoly
equilibria. Another important feature of the linear exchange model is its
computability. Eaves (Ref. 4) proposes an algorithm which computes in a
finite number of steps either an equilibrium or a reduction of the economy
if no equilibrium exists.

Moreover, linear exchange economies turn out to be very useful for
different models where the agents’ preferences are not representable by lin-
ear utility functions, but rather by standard strictly quasiconcave utility
functions. For example, Champsaur–Cornet (Ref. 9) and later Bottazzi
(Ref. 10) examine exchange processes where the agents have strictly quas-
iconcave utility functions. At every instant of time, they define a tangent
economy where the agents exchange small amounts with respect to a linear
short-term utility function which changes over time. This linear utility func-
tion is defined as the normal vector to the indifference surface at the present
endowment point. In this model, the linear utility functions are of course
no longer fixed parameters but depend on the time. Following another direc-
tion, as in Mertens (Ref. 6), the linear exchange model may also be used to
study markets with limit price orders. Then a linear utility function can be
interpreted as an exchange rate or a personal price at which one agrees to
exchange one good for another, and the initial endowment in the linear
exchange economy corresponds to the quantities that one is willing to sell
on the market.

The purpose of this paper is to examine for linear exchange economies
the type of questions which have been studied in the standard case in many
papers since the pioneering work of Debreu (Ref. 11); see for example Refs.
12–16. Indeed, we study how the equilibrium prices and equilibrium alloca-
tions vary with respect to the initial endowments and utility vectors and we
characterize also the multiplicity of equilibria.
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The study of equilibrium prices is equivalent to studying the equilibrium
manifold, which is the graph of the mapping associating the equilibrium price
vectors to the initial endowments and utility vectors. Since the demand associ-
ated with a linear utility function is not single-valued, but a correspondence
which is only upper semicontinuous for strictly positive prices, we cannot
use the classical tools of differential geometry in this work.

Another way to attack this question is to use the tools of sensitivity
analysis for optimization problems. Indeed, in Cornet (Ref. 5), it is proved
that an equilibrium is a solution of a convex optimization program in which
the initial endowments and utility vectors appear as parameters. However,
the objective function of this program is defined through the value of
another program with a multiplicity of solutions. The sensitivity analysis of
this last type of problems is nowadays a topic of active research.

In our paper, we will be interested in two issues, the uniqueness of the
Walras equilibrium and the behavior of the equilibrium allocation and price
correspondence. Further properties, such as the differentiability of the price
function (when a normalization for the price is chosen and the price is
unique up to positive scale multiplication) and the property of gross substi-
tution are studied in Bonnisseau–Florig–Jofré (Ref. 8). The uniqueness of
the utility level at Walrasian equilibrium and the uniqueness of the Wal-
rasian equilibrium price under a survival assumption are well known (Refs.
3, 5). The upper semicontinuity of the equilibrium price and allocation cor-
respondence has been studied already under more restrictive assumptions in
Champsaur–Cornet (Ref. 9).

The outline of the paper is the following. In Section 2, we establish the
model. In Section 3, we study some properties, not always very well-known,
of linear exchange economies such as the upper semicontinuity of the equi-
librium allocation correspondence, the closedness of the equilibrium price
correspondence on the space of the utility vectors and the initial endow-
ments. The convex valuedness of both correspondences will also be estab-
lished. Comparable results can be found in Cornet (Ref. 5), Mertens (Ref.
6), Champsaur–Cornet (Ref. 9). Mainly, Cheng (Ref. 17) attempted to for-
mulate a necessary and sufficient condition for the uniqueness of the equilib-
rium price (up to positive scale multiplication). In fact, his condition is
identical to the Gale sufficient condition (Ref. 3) for the uniqueness of the
equilibrium price. In this sense, we give in Section 4 a neccessary and suf-
ficient condition for the uniqueness up to positive scale multiplication of the
equilibrium price, thereby generalizing these previous works. We charac-
terize also the economies for which the equilibrium allocation is unique.
Later, in Section 5, we attack the more difficult problem concerning the
lower semicontinuity of the equilibrium allocation correspondence. Indeed,
unlike the standard case, the equilibrium allocation correspondence is not
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only upper semicontinuous but as well lower semicontinuous when the util-
ity vectors remain fixed. This result, jointly with the convexity of the values
of this correspondence, gives the existence of equilibrium allocation selec-
tions which are continuous with respect to the initial endowments. Further-
more, we characterize the full measure set where the equilibrium allocation
correspondence is single-valued and lower semicontinuous with respect to
the initial endowments and utility vectors.

These results are deduced from the graph properties associated to the
equilibrium prices and they will be used in the continuation of this paper
(Ref. 8) in order to obtain some differentiability properties of the price and
allocations.

2. Model

We consider a linear exchange economy with a finite set LG{1, . . . , l}
of commodities and a finite set IG{1, . . . , m} of consumers. The consump-
tion set of consumer i is Rl

+; his utility function ui: R
l
+→R is defined by

ui (xi)Gbi · xi

for a given vector bi ∈ Rl
+. His initial endowment is a vector ωi in Rl

+. For
each (b, ω) ∈ ((Rl

+)
m )2, L (b, ω) denotes the linear exchange economy associ-

ated with the parameters b and ω. Throughout the paper, we will make the
following assumptions:

(A1) (∑m

iG1 bi , ∑m

iG1 ωi) ∈ Rl
++BRl

++;

(A2) for every i, bi≠0 and ωi≠0.

Condition (A1) simply means that every good is desired by at least some
consumer and is owned by at least a consumer. Condition (A2) means that
every consumer desires at least one good and owns at least one good. Now,
we recall some standard definitions and known results. Their
proofs can be found for example in Gale (Refs. 1–3) and Cornet (Ref. 5).

Definition 2.1.

(i) If p ∈ Rl
+ is a price vector, the demand of consumer i, denoted

d(bi , p, p ·.ωi ), is the set of solutions of the following maximiz-
ation problem:

max ui (xi )Gbi · xi ,

p · xi⁄p · ωi ,

xi¤0.
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(ii) A Walras equilibrium of L (b, ω) is an element
(x, p) ∈ (Rl

+)
mBRl

+ such that:

(a) for every i, xi ∈ d(bi , p, p · ωi );

(b) ∑m

iG1 xiG∑m

iG1 ωi .

(iii) A proper subset I ′ of I is called self-sufficient in L (b, ω) if, for
all h ∈ L, ∑i ∈ I ′ bihH0 implies ∑i ∈ I I ′ ωih

G0.

(iv) A proper subset I ′ of I is called super self-sufficient in L (b, ω)
if it is self-sufficient and there exists h ∈ L such that ∑i ∈ I ′ ωihH0,
but ∑i ∈ I ′ bihG0.

For every (b, ω) ∈ (Rl
+)

mB(Rl
+)

m, X(b, ω) is the set of Walrasian equilib-
rium allocations in (Rl

+)
m and P(b, ω) is the set of Walrasian equilibrium

price vectors in Rl
+. Note that, if the price p is not positive, then (A1) and

(A2) imply that the demand of at least one consumer is empty. Thus, P(b, ω)
is always included in Rl

++. For consumer i, the marginal rate of substitution
between the commodities h and k, denoted r(bi , h, k), is bih�bik , where by
convention 0�0G0 and bih�0G+S if bihH0. For each p ∈ Rl

++,

δ(bi , p)G{h ∈ L �ph⁄r(bi , h, k)pk , ∀ k ∈ L}.

δ(bi , p) is the set of commodities that the consumer wishes to consume if
the price vector is p, since the ratio between the marginal utility and the
price is maximal for these commodities. More precisely, let (h be the vector
of Rl whose coordinates are equal to 0 except the hth, which is equal to 1.
Then, for all p ∈ Rl

++, d(bi , p, p · ωi ) is the convex hull of the points

(( p · ωi�ph)(
h )h ∈ δ(bi ,p) . (1)

In other words, xi ∈ d(bi , p, p · ωi ) if and only if p · xiGp · ωi and
supp(xi ) ⊂ δ(bi , p), where for y ∈ Rn,

supp(y)G{h ∈ {1, . . . , n} �yh≠0}

is the support of y. We recall that each equilibrium allocation has the same
utility level (Gale, Ref. 3); that is, for every x, x′ ∈ X(b, ω), for every i ∈ I,

bi · xiGbi · x ′i .

If (x, p) is an equilibrium of L (b, ω), then for every i,

bi · xiGû(bi , p, p · ωi),

where û is the indirect utility function, that is, the mapping from
Rl

+BRl
++BR defined by

û(bi , p, wi)Gwi max{bih�ph �h ∈ L}.
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Usually in the literature, the indirect utility function depends on only the
price and the income of the consumer. Since we want to consider the utility
vectors as parameters, we extend the standard definition of indirect utility
function by considering the vector bi , as an argument of û.

In Cornet (Ref. 5), the existence of an equilibrium is proved by con-
sidering the following maximization problem:

max min{bi · xiAû(bi , p, p · ωi) � i ∈ I},

∑
m

iG1

xiG ∑
m

iG1

ωi ,

xi ∈ Rl
+, for all i ∈ I,

p ∈ Rl
++.

The author of Ref. 5 proves that this problem always has a solution and a
solution is an equilibrium of the economy. The converse implication is obvi-
ous. Consequently, the study of the equilibria in a linear exchange economy
can be seen as an analysis of sensitivity for a maximization problem
depending on the parameters ω and b. Nevertheless, the existing results in
this domain are not very useful, since the assumptions usually made are not
satisfied in our framework. Indeed, neither the equilibrium price nor the
equilibrium allocation need to be unique.

A subset of the set of traders is self-sufficient if they own the whole
quantity of goods they are interested in and it is called super self-sufficient
if they own as well a positive amount of some good which nobody in their
subgroup is interested in. An economy such that no such super self-sufficient
subset exists is called irreducible. Let us now introduce some notations
which are used throughout the paper. We will denote by W ⊂
(Rl

+)mB(Rl
+)m the set of pairs (b, ω) such that L (b, ω) is irreducible and

such that Conditions (A1) and (A2) are satisfied. Under (A1), the nonexist-
ence of a super self-sufficient set is a necessary and sufficient condition for
the existence of a Walras equilibrium in linear exchange economies (Ref. 3).

We further denote by V the pairs (b, ω) ∈ W such that L (b, ω) has no
proper self-sufficient subset, and we denote by U the pairs (b, ω) ∈ W such
that L (b, ω) has a unique equilibrium price vector p(b, ω) up to positive
scale multiplication.

In the following, we use extensively subsets of IBL which are directly
linked with graphs. Let p be a price vector in Rl

++ and let

G(b, p)G{(i, h) ∈ IBL �h ∈ δ(bi , p)},

G+(b, ω)G{(i, h) ∈ IBL � ∃ x ∈ X(b, ω), xihH0}.
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From (1), one deduces that

G+(b, ω) ⊂ G(b, p(b, ω)), for all p(b, ω) ∈ P(b, ω).

Furthermore, note that G+(b, ω) [resp. G(b, p)] may be seen as a graph where
the set of vertices is IBL and there exists an edge between the vertices i and
h if and only if (i, h) ∈ G+(b, ω) [resp. (i, h) ∈ G(b, p)].

3. Upper Semicontinuity of the Correspondences, X and P

The following proposition gathers the results of this section and we
then give an example which shows that the correspondence P is not upper
semicontinuous on W .

Proposition 3.1.

(i) If (b, ω) ∈ W , then every pair (x, p) in X(b, ω)BP(b, ω) is a Walras
equilibrium of L (b, ω).

(ii) The correspondence X: W →(Rl
+)m is upper semicontinuous and

has nonempty, convex, and compact values.

(iii) The correspondence P: W →Rl
++ has a closed graph and non-

empty and convex values; furthermore, if we choose a normalization, then
it is upper semicontinuous on V and it reduces to a continuous mapping
on U .

Note that the convexity of X(b, ω) implies that there exists x ∈ X(b, ω)
such that

xihH0, for all (i, h) ∈ G+(b, ω).

Proof of Proposition 3.1.

(i) Let (b, ω) ∈ W , and let (x, p) ∈ X(b, ω)BP(b, ω). By the uniqueness
of the utility level at equilibrium,

bi · xiGû(bi , p, p · ωi ).

Hence, for every i ∈ I,

p · xi¤p · ωi .

Since

∑
m

iG1

xiG ∑
m

iG1

ωi ,
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we deduce that, for every i ∈ I,

p · xiGp · ωi .

Therefore, (x, p) is a Walras equilibrium of L (b, ω).
(ii) The nonemptiness of X(b, ω) comes from Gale (Ref. 3) and the

convexity is a direct consequence of (i) together with the uniqueness of the
utility level at equilibrium (Ref. 3). The compactness is obvious. In order to
show that X is upper semicontinuous, it is sufficient to show that X is locally

bounded and has a closed graph in W B(Rl
+)m. For every x ∈ X(b, ω) and

every i,

0⁄xi⁄ ∑
m

iG1

ωi ,

and therefore X is locally bounded. Let (bn, ωn, xn ) be a sequence in the
graph of X with (bn, ωn ) converging to (b, ω) ∈ W and xn converging to
x ∈ (Rl

+)m. For every n, let pn ∈ P(bn, ωn ), and without loss of generality sup-
pose that pn converges to p ∈ Rl

+ \{0}; indeed, it is always possible to nor-
malize the prices into the unit simplex, which is compact and does not
contain 0. We have to show that x ∈ X(b, ω). Clearly,

∑
m

iG1

xiG ∑
m

iG1

ωi

and

p · xiGp · ωi , for every i.

Thus, it remains only to show that, for all i,

xi ∈ d(bi , q, q · ωi ), for some q ∈ P(b, ω).

We can now differentiate two cases.

Case 1. p ∈ Rl
++. Since, p ∈ Rl

++ implies p · ωiH0, for all i, one checks
easily that xi ∈ d(bi , p, p · ωi ) for all i. Therefore, p is an equilibrium price
vector of L (b, ω) and (x, p) ∈ X(b, ω)BP(b, ω). Note that this step proves
also that the graph of P is closed relatively to Rl

++.

Case 2. p ∉ Rl
++. We construct a price vector q such that (q, x) is an

equilibrium. For this, we consider a partition of the set of commodities and
of the set of consumers, which is built step-by-step. In the following, if S is
a subset of L and x a vector of Rl, x�S is the restriction of x to the coordi-
nates in S. Let

S1Gsupp( p), S ′1GL \S1, I1G{i ∈ I �p · ωiH0}, I ′1GI \I1.
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One checks easily that, for all i ∈ I1, xi ∈ d(bi , p, p · ωi ), hence for all h ∈ S ′1 ,
bihG0. Note that this implies that xi remains in the demand even if one
changes the prices for the commodities in S ′1 . For all i ∈ I ′1 , xi�S 1G0; thus,

∑
i ∈ I 1

xi �S 1G∑
i ∈ I

ωi �S 1¤ ∑
i ∈ I 1

ωi �S 1 .

Since

p�S 1 · ∑
i ∈ I 1

xi �S 1Gp�S 1 · ∑
i ∈ I 1

ωi �S 1 ,

one deduces that

∑
i ∈ I 1

ωi �S 1G∑
i ∈ I

ωi �S 1 .

Finally, since I1 is not a super self-sufficient set, for all i ∈ I1, ωi �S ′1G0. For
all i ∈ I ′1 , since ωi≠0 and since I1∪ {i} is not a super self-sufficient set, there
exists h ∈ S ′1 such that bihH0. We now prove that, for n large enough,
xn

i �S 1G0. For all k ∈ S1, bn
ik�pn

k is bounded from above, whereas bn
ih�pn

h tends
to +S. Consequently, for n large enough, k does not belong to δ(bn

i , p
n )

which implies xn
ikG0.

Let qn be the normalization of pn
�S ′1 in the simplex of RS ′1. Without loss

of generality, we can assume that the sequence (qn ) converges to some p1 in
the simplex of RS ′1. We define

S2Gsupp( p1), S ′2GS ′1 \S2, I2G{i ∈ I ′1 �p1 · ωi �S ′1H0}, I ′2GI ′1 \I2.

First, we prove that

xi �S 2G0, for all i ∉ I2.

Note that the definition of I2 and the fact that supp(ωi ) ⊂ S1 for i ∈ I1 imply
that

ωi �S 2G0, for all i ∉ I2.

Thus,

∑
i ∈ I

ωi �S 2G ∑
i ∈ I 2

ωi �S 2 .

For all i ∈ I2,

pn · xn
i Gpn · ωn

i ,

and for n large enough, xn
i �S 1G0. Consequently,

qn · xn
i �S ′1¤qn · ωn

i �S ′1 .
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At the limit, one obtains

p1 · xi �S ′1Gp1 �S 2 · xi �S 2¤p1 · ωi �S ′1Gp1 �S 2 · ωi �S 2 .

But

∑
i ∈ I 2

xi �S 2⁄ ∑
i ∈ I

ωi �S 2G ∑
i ∈ I 2

ωi �S 2 .

Consequently,

∑
i ∈ I 2

xi �S 2G∑
i ∈ I

ωi �S 2 .

Let us consider the economy obtained by considering only the con-
sumers in I ′1 and the commodities in S ′1 . We now prove that, in this econ-
omy, for all i ∈ I2, xi �S ′1 belongs to d(bi �S ′1 , p1, ωi �S ′1 ). If it is not true, since
p1 · ωi �S ′1H0, there exists ξ i ∈ RS ′1 such that

bi �S ′1 · ξ iHbi �S ′1 · xi �S ′1 and p1 · ξ iFp1 · ωi �S ′1 .

Let ξ̃ i be the vector of Rl defined by

ξ̃ i �S ′1Gξ i and ξ̃ i �S 1G0.

For n large enough,

pn · ξ̃ iFpn · ωi and bn
i · ξ iHbn

i · xn
i ,

since xn
i �S 1G0. This contradicts the maximality of xn.

The maximality of xi �S ′1 implies that

bihG0, for all (i, h) ∈ I2BS ′2 .

Consequently, for all i ∈ I2, there exists h ∈ S2 such that bihH0. This implies
that, for all ηH0 small enough, xi belongs to d(bi , p

η
1 , ωi ), where pη

1 is
defined by

pη
1 �S 1Gp�S 1 and pη

1 �S ′1Gηp1.

This remains true if we change the prices of the commodities in S ′2 .
By doing the same arguments as above, we prove that, for all i ∈ I ′2 ,

there exists h ∈ S ′2 such that bihH0 and, for n large enough xn
i �S 2G0. In a

finite number of steps, one obtains a partition (Sk )kG1,...,r of L, a partition
(Ik )kG1,...,r of I, and a collection of price vectors ( p, p1, . . . , prA1). From the
above construction, there exist positive real numbers (ηρ)ρG2,...,r such that
(q, x) is an equilibrium of L (b, ω), where q is defined by q�S 1Gp�S 1 and, for
all ρG2, . . . , r, q�SρGηρpρA1 �Sρ . This ends the proof of (ii).

(iii) The closedness of P has been proved previously in the first case
of the proof of (ii) and the nonemptiness comes from Gale (Ref. 3). We
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now prove that, for (b, ω) ∈ W , P(b, ω) is convex. Let x ∈ X(b, ω), ( p, p′ ) ∈
(P(b, ω))2, and for any λ ∈ ]0, 1[, let

pλGλpC(1Aλ )p′.

By (ii), for every i ∈ I,

pλ · xiGpλ · ωi

and

G+(b, ω) ⊂ G(b, p)∩G(b, p′ )≠∅ .

Let (i, h) ∈ G(b, p)∩G(b, p′ ); then, for every h′ ∈ L,

bih�ph¤bih′ �ph′ and bih�p ′h¤bih′ �p ′h′ .

Thus,

bih�pλ
h ¤bih′ �pλ

h′ ,

and hence,

G+(b, ω) ⊂ G(b, p)∩G(b, p′ ) ⊂ G(b, pλ ).

Consequently,

xi ∈ d(bi , p
λ , pλ · ωi ),

and as

∑
i ∈ I

xiG∑
i ∈ I

ωi ,

we can conclude that (x, pλ ) is an equilibrium, hence P(b, ω) is convex.
We now prove that, if we choose a normalization, then the correspon-

dence P: V →Rl
++ is upper semicontinuous and reduces to a continuous

mapping on U . It is sufficient to check that the graph of P: V →Rl
++ is

closed in Rl
+ if the prices are normalized into the unit simplex of Rl

+. Let
( pn, bn, ωn ) be a sequence of the graph of P on V converging to
( p, b, ω) ∈ (Rl

+ \{0})BV for this normalization. Clearly, if p ∈ Rl
++, then by

the closedness of the graph of P in W BRl
++, p ∈ P(b, ω). Otherwise, if

p ∉ Rl
++, then it is not an equilibrium price vector. Let

S1Gsupp( p) and I1G{i ∈ I �p · ωiH0}.

I1 is nonempty, since ∑i ∈ I ωiZ0, and I1≠I, since p ∉ P(b, ω). For all i ∈ I1,

supp(bi ) ⊂ S1 and ∑
i ∈ I 1

ωi �S 1G∑
i ∈ I

ωi �S 1 .



JOTA: VOL. 109, NO. 2, MAY 2001248

Consequently, I1 is self-sufficient. This contradicts that (b, ω) ∈ V . We prove
below in Corollary 4.1 that U ⊂ V , which shows the continuity of P on U . �

We now give an example where the correspondence P: W →Rl
++ is not

upper semicontinuous. Consider an economy with three agents and three
commodities. Let

b1G(1, 0, 0), b2G(0, 1, 0), b3G(0, 1, 1);

the initial endowments are

ωt
1G(1, t, 0), ωt

2G(1, 1, 0), ωt
3G(0, 0, 1).

The consumers 1 and 2 form a self-sufficient subset. Choosing the second
good as a numéraire, for all tH0,

P(b, ωt )G{(t, 1, s) �s ∈ ]0, 1]}.

Let

OG{x ∈ R3
++�x3H1Ax1}.

Clearly, this defines an open neighborhood of P(b, ω1), but for every integer
nH0,

(1A2�n, 1, 1�n) ∈ P(b, ω(1A2�n) ) and (1A2�n, 1, 1�n) ∉ O.

Thus, P is not upper semicontinuous at (b, ω1).

4. Uniqueness of the Equilibrium Price and Equilibrium Allocation

The uniqueness of the equilibrium price vector on U does not imply
that X(b, ω) is reduced to a singleton. Now, we characterize the cases where
P(b, ω) and X(b, ω) are singletons.

For a given economy L (b, ω), an equilibrium price vector p ∈ P(b, ω)
is said to decompose the economy if there exists a partition (I1, I2) of the
set of consumers I such that:

(a) I1 and I2 are both nonempty and, for all h ∈ L, ∑i ∈ I 1
ωihH0 if and

only if ∑i ∈ I 2
ωihG0 for all i ∈ I2;

(b) for kG1, 2, p is an equilibrium price vector for the economy
obtained by restricting the economy L (b, ω) to the set of con-
sumers Ik .

Gale (Ref. 3) proved that, if an equilibrium price vector does not
decompose the economy, then every other equilibrium price vector is pro-
portional to it. In particular, this implies that a sufficient condition for the



JOTA: VOL. 109, NO. 2, MAY 2001 249

uniqueness of the equilibrium price vector is that one consumer i satisfies
the strong survival assumption ωi ∈ Rl

++. In Ref. 17, the author asserts that
a given economy has a unique equilibrium price up to constant scale multi-
plication if and only if no equilibrium price decomposes the economy. By
Gale (Ref. 3), this condition is sufficient for the uniqueness, but the follow-
ing counterexample shows that it is not necessary. Consider an economy
with two consumers and two commodities. The utility vectors are

b1G(1, 1), b2G(1, 1),

and the initial endowments are

ω1G(1, 0), ω2G(0, 1).

The unique equilibrium price vector (up to positive scale multiplication) of
this economy is

pG(1, 1),

with

X(b, ω)G{(1Aλ , λ ), (λ , 1Aλ ) �λ ∈ [0, 1]},

and in particular,

(ω1, ω2) ∈ X(b, ω).

Clearly, the equilibrium price vector pG(1, 1) decomposes the economy and

x1Gω1, x2Gω2

are the respective equilibrium allocations. Thus the nondecomposability is
not necessary for the uniqueness of the equilibrium price.

In Gale’s sufficient condition (Ref. 3), if we replace G+(b, ω) (he con-
siders the goods consumed at a given equilibrium price vector) by
G(b, p(b, ω)), the resulting condition is necessary and sufficient for unique-
ness as following proposition shows.

Proposition 4.1. Let (b, ω) ∈ W and p ∈ P(b, ω). Then, (b, ω) ∈ U if and
only if the economy L (c, ω), defined by

cihG�bih , if (i, h) ∈ G(b, p),

0, otherwise,

has no proper self-sufficient subset.
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Proof of Proposition 4.1. First, we prove the ‘‘if part’’. Let (x, p) ∈
X(b, ω)BP(b, ω). Note that (x, p) ∈ X(c, ω)BP(c, ω) and (c, ω) ∈ W . Sup-
pose that (I1, I2) is a partition of I and that I1 is self sufficient in the economy
L (c, ω). Note that

V1G{h ∈ L � ∃ i ∈ I1, cihH0}

and

WjG�h ∈ L � ∑
i ∈ Ij

, ωihH0� , for jG1, 2.

As I1 is self sufficient, V1⊂ W1; and since it is not super self-sufficient,
W1⊂ V1. Consequently, V1GW1. Since I1 is self sufficient, W2⊂ L \V1.

It is not difficult to check that, for every i ∈ I1,

xi �L V 1Gωi �L V 1G0.

As for every i ∈ I2, ωi �V 1G0, at equilibrium we must also have xi �V 1G0.
For λH0, let

π(λ )Gλπ1Cπ2,

where π1 [resp. π2] is the canonic embedding of p�V 1 [resp. p�L V 1 ] into Rl.
We will show that there exists λ̄H1, such that (x, π(λ̄ )) ∈ X(b, ω)BP(b, ω),
leading to a contradiction of (b, ω) ∈ U .

For every i ∈ I1, δ(bi , p) ⊂ V1, and thus there exists λ̄H1 close enough
to 1 such that

δ(bi , π(λ̄ ))Gδ(bi , p).

Now, for i ∈ I2 and every λH1, one checks easily that

δ(bi , π(λ ))Gδ(bi , p)∩ (L \V1).

From this, we can deduce that, for every i ∈ I,

supp(xi ) ⊂ δ(bi , π(λ̄ )).

For every i ∈ I,

π(λ̄ ) · xiGπ(λ̄ ) · ωi .

Therefore, π(λ̄ ) is in P(b, ω) and thus (b, ω) ∉ U .
We will now prove the ‘‘only if part’’. Suppose that

( p, q) ∈ (P(b, ω)2).

We define the vector r ∈ Rl
++ by

rhG1phqh, for every h in L.
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By Cornet (Ref. 5), r ∈ P(b, ω) and, for every i, there exists hi such that
(i, hi ) ∈ G+(b, ω).

By the uniqueness of the utility level at equilibrium (Ref. 3), for every
i ∈ I,

(1�2)û(bi , p, p · ωi )C(1�2)û(bi , q, q · ωi )Gû(bi , r, r · ωi ).

Hence, one has for all i,

(1�2)( p · ωi (bihi�phi )Cq · ωi (bihi�qhi ))Gr · ωi (bihi�rhi ).

The arithmetic mean is greater than or equal to the geometric mean.
The equality holds only when the two numbers are equal. Thus, for every i
in I and every h in L,

(1�2)phωih�phiC(1�2)qhωih�qhi¤1phωih�phi
1qhωih�qhi

Grhωih�rhi .

The above equality and inequalities imply that, for every i in I and
every h,

phωih�phiGqhωih�qhi .

Hence, for every i ∈ I and every h ∈ supp(ωi ),

ph�qhGphi�qhi;

thus, p and q are collinear on supp(ωi ) ∪ {hi}.
Define graph Z as the graph with the set of vertices L and with an

edge between two vertices (g, h) if, for some i, (g, h) ⊂ supp(ωi ). Denote by
Z1, . . . , Zk the set of vertices of its connected components. This is a par-
tition of L and it induces a partition (Ij )

k
jG1 of the consumers where

IjG{i ∈ I �supp(ωi ) ⊂ Zj}.

It is now straightforward to prove that, for every j ∈ {1, . . . , k}, p and q are
collinear on Zj ∪ (*i ∈ Ij{hi}).

Therefore, for jG1, . . . , k, there exists tjH0 such that

qhGtjph , for all h ∈ Zj .

To end the proof, it suffices to prove that

t1Gt2G· · ·Gtk .

Actually, we prove that

t1Gmin{tj � jG1, . . . , k}.

Since the proof can be done symmetrically for every tj , this implies that they
are all equal.
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Since I1 is not self-sufficient in the economy L (c, ω), there exists
(i, h2) ∈ I1B(L \Z1) such that h2∈ δ(bi , p). Say, h2∈ Z2. By the uniqueness of
the utility level at equilibrium,

û(bi , p, p · ωi )Gp · ωi (bih2�ph2 )¤q · ωi (bih2�qh2 )

Gt1p�Z 1 · ωi �Z 1 (bih2�t2ph2 ).

Therefore, t1⁄ t2. Applying this argument to *
r
jG1 Ir subsequently for rG

2, . . . , k, we deduce that

t1Gmin{tj � jG1, . . . , k}. �

We cannot use directly the vectors b in the above proposition. Indeed,
the following example indicates that we require to introduce the vector c.
Consider an economy with two consumers and two commodities. The utility
vectors are

b1G(2, 1), b2G(1, 2)

and the initial endowments are

ω1G(1, 0), ω2G(0, 1).

The equilibrium price of this economy is not unique, but L (b, ω) has no
proper self-sufficient subset. Eaves (Ref. 4) proved that it is always possible
to compute with the Lembke algorithm a Walrasian equilibrium in a finite
number of steps. Thus, assuming an equilibrium price as given is not such
an expensive requirement, since it is possible to compute one in finite time.
Then, given an economy L (b, ω), it is possible to check in a finite number
of steps whether the equilibrium price is unique up to positive scale multi-
pliction or not.

Corollary 4.1. We have U ⊂ V ⊂ W .

By definition, U and V are included in W . The first inclusion is an
immediate consequence of Proposition 4.1. Indeed, for (b, ω) to be in U , we
need (c, ω) to be in V , and this is not possible if (b, ω) ∉ V , since a self-
sufficient subset of L (b, ω) is also a self-sufficient subset of L (c, ω).

The following proposition gives a necessary and sufficient condition for
the uniqueness of the equilibrium allocation. In order to check this criterion,
it is necessary to know the graph G+(b, ω).

Proposition 4.2. Let (b, ω) in W . X(b, ω) is a singleton if and only if
the graph G+(b, ω) has no (nondegenerate) cycle; this is, there does not exist
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a finite family ((i1, h1), . . . , (in , hn )) of two-by-two different elements of IBL
such that (iν , hν ) and (iν , hνC1) belong to G+(b, ω) where hnC1Gh1.

The proof of this proposition uses the following lemma, which will be
useful also in the proof of other results. Its proof is given in the Appendix
(Section 6).

Lemma 4.1. Let (b, ω) in W , and let x and x̄ be two different elements
of X(b, ω). Then, there exists a finite family ((i1, h1), . . . , (in , hn )) of two-by-
two different elements of IBL such that:

(i) for every νG1, . . . , n, xiνhνFx̄iνhν , x̄iνhνC1FxiνhνC1; hence, (iν , hν )
and (iν , hνC1) belong to G+(b, ω), where hnC1Gh1;

(ii) 1G∏n
νG1 r(biν , hν , hνC1).

We remark that, for all ν ∈ {1, . . . , n}, r(biν , hν , hνC1) ∈ ]0,S[.

Proof of Proposition 4.2. The ‘‘only if part’’ is a direct consequence
of the previous lemma. Let us now prove the converse implication by con-
traposition. If X(b, ω) is a singleton and if there exists a finite family
((i1, h1), . . . , (in , hn )) of two-by-two different elements of IBL such that, for
all ν, (iν , hν ) and (iν , hνC1) belong to G+(b, ω), where hnC1Gh1, let x be the
unique element of X(b, ω). From the definition of G+(b, ω), xihH0 for all
(i, h) ∈ G+(b, ω).

We exhibit an equilibrium allocation x̃ of L (b, ω) which is de-
duced from the allocation x by modifying only the components
(xiνhν , xiνhνC1 )νG1,...,n . Fix p(b, ω) ∈ P(b, ω), and let αH0 such that

αFmin{phνC1 (b, ω)xiνhûC1 �νG1, . . . , n}.

Such α exists, since

phνC1 (b, ω)xiνhνC1H0, for all νG1, . . . , n.

Let

x̃iνhνGxiνhνCα �phν (b, ω) and x̃iνhνC1GxiνhνC1Aα �phνC1 (b, ω).

Since (iν , hν ) and (iν , hνC1) belong to G+(b, ω), one checks easily that x̃ is
an equilibrium allocation of L (b, ω), which contradicts the fact that X(b, ω)
is a singleton since x̃≠x. �

The next proposition shows that it is possible to compute G+(b, ω) in
a finite number of steps. For this, it is sufficient to compute a Walras equi-
librium by applying Eaves’ algorithm (Ref. 4) and then the algorithm pro-
posed here.
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Proposition 4.3. Let (x, p) be a Walras equilibrium of L (b, ω). Then,
the following finite algorithm computes some ξ ∈ X(b, ω) such that (i, h) ∈
G+(b, ω) if and only if (i, h) ∈ supp ξ :

Step 1. Set x0Gx and set rG0.
Step 2. Compute an element out of the set F

r, which we define to be
the set of families ((i1, h1), . . . , (in , hn )) of two-by-two different
elements of IBL such that, for all j ∈ {1, . . . , n}, xr

ijhjA1H0 with
h0Ghn , for all j ∈ {1, . . . , n}, (ij , hj ) ∈ G(b, p), and xr

i1h1G0. If
F

rG∅ , then go to Step 4; otherwise, go to Step 3.
Step 3. Choose ((i1, h1), . . . , (in , hn )) ∈ F

r. Let

τ rG min
j ∈ {1,...,n}

phjA1x
r
ijhjA1 ,

with h0Ghn . Let t r ∈ (Rl )m be defined as follows: for
(i, h) ∉ ((i1, h1), . . . , (in , hn )), trihG0; for all j ∈ {1, . . . , n},
t r
ijhjGτr�(2phj ) and t r

ijhjA1G−τr�(2phjA1 ). Set

xrC1GxrCt r;

set the counter to rC1, and go back to Step 2.
Step 4. Set ξGxr.

Here, we did not specify how to compute F
r or to check that it is

empty. However, note that it is possible to compute F
r in a finite number

of steps. Indeed, F
r is a subset out of the set of all cycles of the finite graph

G(b, p) which pass through any vertex at most once, so a subset out of a
finite set. Thus, one may compute all such cycles with a finite algorithm
(Ref. 18). Then, for each potential element of F

r, it takes again only a finite
number of computations in order to check whether it is in F

r or not.
In order to prove the proposition, we use the following lemma which

we prove in the Appendix (Section 6).

Lemma 4.2. Let (x, p) be a Walras equilibrium of L (b, ω). Then, the
following assertions are equivalent:

(i) for all (i, h) ∈ G+(b, ω), (i, h) ∈ supp x;
(ii) there exists no finite family ((i1, h1), . . . , (in , hn )) of two-by-two dif-

ferent elements of IBL such that, for all j ∈ {1, . . . , n}, xijhjA1H0
with h0Ghn , for all j ∈ {1, . . . , n}, (ij , hj ) ∈ G(b, p), and for at least
one j ∈ {1, . . . , n}, xijhj

G0.

Proof of Proposition 4.3. One may check that, for all r, for all i ∈ I,

p · t r
iG0, xr

iCt r
i¤0, xr

ihCt r
ihH0,
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only if (i, h) ∈ G(b, p) and ∑i ∈ I t
r
iG0. Therefore, (xrCt r, p) is a Walras equi-

librium of L (b, ω). Moreover, for all r ∈ N such that F
rA1≠∅ , supp xrA1

is a proper subset of supp xr. (Note that this implies that, if F
0≠∅ [i.e., if

assertion (ii) in Lemma 4.2 does not hold], there exists (i, h) ∈
supp x1 \supp x0, thereby contradicting assertion (i) in Lemma 4.2; hence
assertion (i) of Lemma 4.2 implies assertion (ii) of Lemma 4.2.

This method computes iteratively Walras equilibria (xr, p). The process
stops with some ξ ∈ X(b, ω) after a finite number of iterations (less than ml )
as soon as F

rG∅ . By Lemma 4.2, ξ ∈ X(b, ω) such that (i, h) ∈ G+(b, ω) if
and only if (i, h) ∈ supp ξ . �

The following proposition gives a sufficient condition on the utility
functions in order to obtain a unique equilibrium allocation. This condition
is faster to be checked than the necessary and sufficient condition. It is
stated only in terms of the fundamentals of the economy.

Proposition 4.4. Let B be the set of elements b ∈ (Rl
+)m such that, for

all finite families ((i1, h1), . . . , (in , hn )) of two-by-two elements of IBL,

∏
n

νG1
biνhν �biνhνC1≠1,

where hnC1Gh1, biνhν and biνhνC1 are different from zero for all ν ∈ {1, . . . , n}.

Then, for all (b, ω) ∈ W ∩ (B B(Rl
+)m ), X(b, ω) is a singleton. Furthermore,

the mapping (b, ω)→X(b, ω) is continuous on W ∩ (B B(Rl
+)m ).

This result is a direct consequence of the previous Lemma 4.1, and the
closedness of the graph of X. In particular, it implies that the set of econom-
ies with a unique equilibrium allocation contains a dense open subset of
(Rl

+)mB(Rl
+)m. As the following example shows, the fact that X(b, ω) is a

singleton does not imply that X(b, ω′ ) is a singleton for ω′ close to ω.
Consider an economy L (b, ω) with three agents and three commodities.
Let

b1G(2, 2, 1), b2G(1, 2, 2), b3G(2, 1, 2)

and

ω1G(1, 1, 4), ω2G(1, 1, 1), ω3G(1, 1, 1).

The unique equilibrium of this economy is (x, p), with

pG(1, 1, 1), x1G(3, 3, 0), x2G(0, 0, 3), x3G(0, 0, 3).
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Perturbing the initial endowment of the third consumer by

ω(
3G(1C(, 1, 1),

it is easy to check that, for every (H0, (y, p), with

pG(1, 1, 1), y1G(3Ct, 3At, 0),

y2G(0, t, 3At), y3G((At, 0, 3Ct),

is a Walras equilibrium for every t ∈ [0, (].

5. Lower Semicontinuity of X

We now study the lower semicontinuity of the correspondence X. The
result differs depending on whether we consider fixed or variable utility
functions. We will denote

W bG{ω∈ (Rl
+)m � (b, ω) ∈ W }.

Proposition 5.1.

(i) For every b ∈ (Rl
+)m, the correspondence ω→X(b, ω) is lower semi-

continuous on W b .
(ii) The correspondence X from W to (Rl

+)m is lower semicontinuous
at (b, ω) if and only if X(b, ω) is a singleton.

The proof of this proposition needs the following lemmata, which use
Lemma 4.1 in their proofs. Their proofs are given in the Appendix. For all
ω∈ (Rl

+)m and for all rH0, let

B (ω, r)G�ω′∈ (Rl
+)m� ∑

m

iG1

��ω′iAωi ��Fr�.
Lemma 5.1. For every (b, ω) in W , there exists rH0 such that, for all

ω′∈ B (ω, r)∩ W b , G+(b, ω) ⊂ G+(b, ω′ ).

The conclusion of Lemma 5.1 does not hold if one perturbs the utility
functions. Let us consider an economy with two goods and two consumers.
Let

b1Gb2G(1, 1) and ω1Gω2∈ Rl
++.

Then, an equilibrium is

(ω1, ω2, pG(1, 1)).
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Consequently,

G+(b, ω)G{(1, 1), (1, 2), (2, 1), (2, 2)}.

If we now consider the perturbed economy with the same parameters, except
for the fact that

br
1G(1, 1Cr),

then G+(br, ω) is included and different from G+(b, ω) since b1 and b2 are
not proportional. With the same example, one shows that S is not lower
semicontinuous everywhere. Indeed, let

ω1Gω2G(1, 1).

Then,

X(b, ω)G{((t, 2At), (2At, t)) � t ∈ [0, 2]}

and

X(br, ω)G{((0, 2), (2, 0))}, for rH0.

In the following lemma, we give a necessary and sufficient condition
under which the conclusion of Lemma 5.1 holds even if one perturbs the
utility functions.

Lemma 5.2. For every (b, ω) in W , there exists rH0 such that, for all
(b′, ω′ ) ∈ (B (b, r)BB (ω, r))∩ W , G+(b, ω) ⊂ G+(b′, ω′ ) if and only if X(b, ω)
is a singleton.

Proof of Proposition 5.1.

(i) Let (b, ω) ∈ W such that the correspondence X(b, · ) is not lower
semicontinuous at this point. Then, there exists an open subset V of (Rl

+)m

such that X(b, ω)∩V≠∅ and a sequence (ωq) in W b which converges to ω
such that X(b, ωq )∩VG∅ . Let (xq) be a sequence such that xq ∈ X(b, ωq )
for all q. Without loss of generality, we can assume that the sequence (xq )
converges to an element x and, since X has a closed graph, x belongs to
X(b, ω). Let ξ ∈ X(b, ω)∩V. Since V is open, without loss of generality, we
can assume that ξ ihH0 for all (i, h) ∈ G+(b, ω). Let

yGξAx.

We finish this part of the proof by showing that, for q large enough,

ξ qGxqCy ∈ X(b, ωq ),

which contradicts X(b, ωq )∩VG∅ , since (ξ q ) converges to ξ .
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First, we show that ξ q is a nonnegative allocation for q large enough.
If yihF0, then xihH0, which implies that (i, h) ∈ G+(b, ω). Consequently,
ξ ihH0; hence, for q large enough, ξ q

ih which converges to ξ ih is nonnegative.
If yih¤0, then

ξ q
ihGxq

ihCyih

is obviously nonnegative. Note that yih≠0 only if (i, h) ∈ G+(b, ω). From
Lemma 5.1, for q large enough, G+(b, ω) ⊂ G+(b, ωq). Consequently,

ξ q
ihGxq

ihCyihH0, only if (i, h) ∈ G+(b, ωq ).

To prove that ξ q ∈ X(b, ωq), it suffices to prove that

p(b, ωq) · yiG0, for all i and some p(b, ωq ) ∈ P(b, ωq ).

Since ξ and x belongs to X(b, ω), one has

p(b, ω) · yiG0, for all i and all p(b, ω) ∈ P(b, ω).

Furthermore, since for q large enough, G+(b, ω) ⊂ G+(b, ωq ), one has that,
for all ((i, h), (i, h′ )) ∈ (G+(b, ω))2, for all p(b, ω) ∈ P(b, ω), and all p (b, ωq) ∈
P(b, ωq ),

bih�bih′Gpih (b, ωq)�pih′(b, ωq)Gpih (b, ω)�pih′(b, ω).

Hence, for each i, for all p(b, ω) ∈ P(b, ω), and all p(b, ωq ) ∈ P(b, ωq ), the
restrictions of the price vectors p(b, ωq ) and p(b, ω) to the commodities h
such that (i, h) ∈ G+(b, ω) are proportional. Consequently, since yih≠0 only
if (i, h) ∈ G+(b, ω),

p(b, ωq ) · yiG0, for all p(b, ωq ) ∈ P(b, ωq ).

This ends the first part of the proof.
(ii) Note that, if X(b, ω) is a singleton, the lower semicontinuity of X

at (b, ω) is a direct consequence of the fact that X is upper semicontinuous.
We now prove the converse implication. For this, first we prove that, if X
is lower semicontinuous at (b, ω), then there exists rH0 such that, for all
(b′, ω′ ) ∈ (B (b, r)BB (ω, r))∩ W ,

G+(b, ω) ⊂ G+(b′, ω′ ).

Together with Lemma 5.2, this implies that X(b, ω) is a singleton.
Let us assume by contraposition that X is lower semicontinuous at

(b, ω) and that, for all rH0, there exists (br, ωr ) ∈ (B(b, r)BB (ω, r))∩ W and
(i r, hr ) ∈ G+(b, ω) such that (i r, hr ) ∉ G+(br, ωr ). Since G+(b, ω) is finite, there
exists a positive sequence (rq ) which converges to 0 such that the sequence
(i rq

, hrq
) is constant equal to (i1, h1). For every converging sequence (xrq

)
such that xrq ∈ X(brq

, ω rq
), one has xrq

i1h1G0, since (i1, h1) ∉ G+(brq
, ω rq

).
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Consequently, at the limit, xi1h1G0. Since (i1, h1) ∈ G+(b, ω), there exists an
element ξ ∈ X(b, ω) such that ξ i1h1H0. This proves that no sequence (xrq

)
such that xrq ∈ X(brq

, ω rq
) converges to ξ , which contradicts the fact that X

is lower semicontinuous at (b, ω). �

6. Appendix: Proofs of the Lemmata

Proof of Lemma 4.1.

(i) Since x is different from x̄ and

∑
m

iG1

xiG ∑
m

iG1

x̄iG ∑
m

iG1

ωi ,

there exists (i1, h1) ∈ IBL such that xi1h1Fx̄i1h1 . Since xi1h1Fx̄i1h1 and for all
p(b, ω) ∈ P(b, ω),

p(b, ω) · xGp(b, ω) · x̄,

there exists h2∈ L such that h2≠h1 and x̄i1h2Fxi1h2 . Since

∑
m

iG1

xih2G ∑
m

iG1

x̄ih2G ∑
m

iG1

ωih2 ,

there exists i2∈ I such that i2≠ i1 and 0⁄xi2h2Fx̄i2h2 . With the same argument,
we get a sequence (iν , hν )ν¤1 in IBL such that xiνhνFx̄iνhν and
x̄iνhνC1FxiνhνC1 . Consequently, (iν , hν ) and (iν , hνC1) are in G+(b, ω).

Applying the same argument in the other direction, we obtain a
sequence (iν , hν )ν⁄1 in IBL such that xiνhνFx̄iνhν and x̄iνhνC1FxiνhνC1; hence,
(iν , hν ) and (iν , hνC1) are in G+(b, ω).

Since IBL is finite, there exist νH1 and ν ′⁄1 such that (iν , hν )G
(iν ′ , hν� ). The family {(i1, h1), . . . , (iν , hν ), (iν ′C1 , hν ′C1), . . . , (i0, h0)} satisfies
the conclusion of (i) if we choose the first ν and ν ′ such that
(iν , hν)G(iν ′ , hν ′).

(ii) This equality is a direct consequence of the fact that, for every νG
1, . . . , n, (iν , hν ) and (iν , hνC1) are in G+(b, ω), where hnC1Gh1; thus, for all
p(b, ω) ∈ P(b, ω),

biνhν
�phν (b, ω)GbiνhνC1�phνC1 (b, ω),

where hnC1Gh1. �

Proof of Lemma 4.2. The proof that assertion (i) implies assertion (ii)
is contained in the proof of Proposition 4.3.
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We prove by contraposition that assertion (ii) implies assertion (i). Sup-
pose that there exists (i, h) ∈ G+(b, ω) such that xihG0. Let ξ ∈ X(b, ω) with
ξ ihH0 and, as X(b, ω) is convex, we may assume that supp x is a proper
subset of supp ξ .

Let

t0GξAx, τ 0G min
(i,h) ∈ supp t0

�pht
0
ih �,

and let

(i1, h1) ∈ argmin
(i,h) ∈ supp t0

�pht
0
ih �.

By the same argument as in the proof of the previous lemma, we may con-
struct a finite family ((i1, h1), . . . , (in , hn )) of two-by-two different elements
of IBL such that, for all j ∈ {1, . . . , n}, t0

i jhj t
0
i1h1H0 and t0

i jhj t
0
i jhjA1F0 with

h0Ghn . Let θ0 ∈ (Rl )m such that, for all j ∈ {1, . . . , n},

θ0
i jhjGτ 0t0

i jhj�( phj � t
0
i jhj �), θ0

i jhjA1Gτ 0t0
i jhjA1�( phjA1 �t0

i jhjA1 �),

with h0Ghn and θ0
ijG0 otherwise. Now, one may check that (xCθ0, p) is a

Walras equilibrium of L (b, ω) and that supp t1, with t1GξAxAθ0, is a
proper subset of supp t0. Inductively, one may construct a finite family
(θ0, . . . , θk ) ∈ ((Rl )m )kC1 such that, for all r ∈ {1, . . . , k}, supp(ξAxA
∑r

ρG0 θρ) is a proper subset of supp(ξAxA∑rA1

ρG0 θρ) and (xC∑r

ρG0 θρ, p) is
a Walras equilibrium of L (b, ω) and xC∑k

ρG0 θρGξ .
Let r ∈ {0, . . . , k} be such that

supp�xC ∑
rA1

ρG0

θρ�Gsupp x

is a proper subset of supp(xC∑r

ρG0 θρ). For all (i, h) ∈ IBL, t0
ih¤0 if and

only if, for all ρ∈ {0, . . . , k}, θρ
ih¤0, and t0

ihG∑k

ρG0 θρ
ih , thus (xCθr, p) is a

Walras equilibrium of L (b, ω). Moreover, supp x is a proper subset of
supp(xCθr ). The finite family ((i1, h1), (i2, h2), . . . , (in , hn )) of two-by-two
different elements of IBL which we constructed in order to compute θr was
chosen such that, for all j ∈ {1, . . . , n}, xijhjA1H0 with h0Ghn , for all j ∈
{1, . . . , n}, (ij , hj ) ∈ G(b, p), and by the strict inclusion of the supports for at
least one j ∈ {1, . . . , n}, xijhjG0. This contradicts assertion (ii). �

Proof of Lemma 5.1. Let us assume that the conclusion of Lemma 5.1
is false. Then, there exists (b, ω) ∈ W and a sequence (ωq, i q, hq ) ∈
(W b )BIBL such that (ωq ) tends to ω and, for every q, (i q, hq) ∈ G+(b, ω),
(i q, hq) ∉ G+(b, ωq ).
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Since IBL is finite, we can assume without loss of generality that the
sequence (i q, hq ) is constant and equal to (i1, h1). For every q, let
xq ∈ X(b, ωq ). Since (ωq ) converges to ω, the sequence (xq ) is bounded;
hence, we can assume without loss of generality that the sequence (xq ) con-
verges to x. Since X has a closed graph, x belongs to X(b, ω). Furthermore,
since (i1, h1) ∉ G+(b, ωq ), one has xq

i1h1G0, hence xi1h1G0. From the defi-
nition of G+(b, ω), there exists x̄ ∈ X(b, ω) such that x̄i1h1H0.

From Lemma 4.1, there exists a finite family (iν , hν )νG1,...,n of IBL such
that:

(i) for every νG1, . . . , n, xiνhνFx̄iνhν , x̄iνhνC1FxiνhνC1; hence, (iν , hν )
and (iν , hνC1) belong to G+(b, ω) where hnC1Gh1;

(ii) 1G∏n
νG1 r(biν , hν , hνC1).

For q large enough, for all νG1, . . . , n, one has xq
iνhνC1H0; hence,

(iν , hνC1) ∈ G+(b, ωq ). We now show that, for all p(b, ωq) ∈ P(b, ωq) and all
ν, (iν , hν ) ∈ G(b, p(b, ωq )). Indeed, if it is not true, then there exists ν̄ ∈
{1, . . . , n} such that, for some p(b, ωq) ∈ P(b, ωq),

biν̄hν̄ �phν̄ (b, ωq )Fbiν̄hν̄C1�phν̄C1 (b, ωq ).

Furthermore, for all νG1, . . . , n,

biνhν �phν (b, ωq )⁄biνhνC1�phνC1 (b, ωq ).

Hence, for all ν,

phν (b, ωq )¤riν (b, hν , hνC1)phνC1 (b, ωq ),

with at least one strict inequality.
From (ii), one deduces that, for some p(b, ωq ) ∈ P(b, ωq ),

ph1 (b, ωq )H ∏
n

νG1
r(biν , hν , hνC1)ph1 (b, ωq )Gph1 (b, ωq ).

Hence, one obtains a contradiction.
We end the proof of Lemma 5.1 by showing that (i1, h1) ∈ G+(b, ωq ),

which leads to a contradiction. For this, we exhibit an equilibrium alloca-
tion x̃ q of L (b, ωq ) which is deduced from the allocation xq by modifying
only the components (xq

iνhν , x
q
iνhνC1)νG1,...,n . Fix p(b, ωq ) ∈ P(b, ωq ), and let

αH0 such that

αFmin{ phνC1 (b, ωq )xq
iνhνC1 �νG1, . . . , n}.

Let

x̃ q
iνhνGxq

iνhνCα �phν (b, ωq ),

x̃ q
iνhνC1Gxq

iνhνC1Aα �phνC1 (b, ωq ).
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For all p(b, ωq ) ∈ P(b, ωq ), since (iν , hν ) and (iν , hνC1) are in G(b, p(b, ωq )),
one checks easily that x̃ in an equilibrium allocation of L (b, ωq ). Further-
more, since x̃i1h1H0, one deduces that (i1, h1) ∈ G+(b, ωq ). �

Proof of Lemma 5.2. First, let us assume by contraposition that
X(b, ω) is not a singleton. From Lemma 4.1, there exists a finite family
((i1, h1), . . . , (in , hn )) of two-by-two different elements of IBL such that, for
all νG1, . . . , n, (iν , hν ) and (iν , hνC1) belong to G+(b, ω) where hnC1Gh1.

Let p ∈ P(b, ω) and x ∈ X(b, ω). Without loss of generality, we assume
that

ph1xi1h1Gmin{ phνxiνhν �νG1, . . . , n}.

Let ρ∈ ]0, bi1h1 [, and let bρ be deduced from b by modifying only bi1 by
bρ

i1Gbi1Aρ(h1. We exhibit an equilibrium (x̃, p) of L (bp, ω) which is deduced
from the allocation x by modifying only the components
(xiνhν , xiνhνC1)νG1,...,n . Let

x̃iνhνGxiνhνAph1xi1h1�phν

and

x̃iνhνC1GxiνhνC1Cph1xi1h1�phνC1 .

One checks easily that (x̃, p) is an equilibrium of L (bρ, ω), since x̃i1h1G0.
Furthermore, (i1, h1) does not belong to G(bρ, p); hence, (i1, h1) does not
belong to G+(bρ, ω). Since (i1, h1) ∈ G+(b, ω), this implies that G+(b, ω) is not
a subset of G+(bρ, ω) for ρH0.

For the converse implication, we assume by contraposition that X(b, ω)
is a singleton and, for all rH0, there exists (br, ωr ) ∈ (B(b, r)BB (ω, r))∩ W

and (i r, hr) ∈ G+(b, ω) such that (i r, hr ) ∉ G+(br, ωr ). Let xr ∈ X(br, ωr ). Since
X is upper semicontinuous, there exists a positive sequence (rq ) which con-
verges to 0 such that the sequence (xrq

) converges to x, the unique element
of X(b, ω), and (i rq

, hrq) is constant and equal to (i1, h1). Since
(i1, h1) ∉ G+(brq

, ωrq
), one has xrq

i1h1G0, hence xi1h1G0, which contradicts the
fact that (i1, h1) ∈ G+(b, ω). �
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