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Differentiability of Equilibria for
Linear Exchange Economies1
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Abstract. The purpose of this paper is to study the differentiability
properties of equilibrium prices and allocations in a linear exchange
economy when the initial endowments and utility vectors vary. We
characterize an open dense subset of full measure of the initial endow-
ment and utility vector space on which the equilibrium price vector is a
real analytic function, hence infinitely differentiable function. We pro-
vide an explicit formula to compute the equilibrium price and allocation
around a point where it is known. We also show that the equilibrium
price is a locally Lipschitzian mapping on the whole space. Finally,
using the notion of the Clarke generalized gradient, we prove that linear
exchange economies satisfy a property of gross substitution.
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1. Introduction

The aim of this paper is to study the differentiability properties of the
equilibrium prices and allocations for linear exchange economies with
respect to the initial endowments and utility vectors. A linear economy
means that the preferences of the agents can be represented by linear utility
functions. These questions, which are related to sensitivity analysis, arise in
a natural way in economic theory and they have been studied extensively
since Debreu’s work (Ref. 1); see for example Refs. 2–6 in the case of strictly
quasiconcave utility functions. Hence, these results do not encompass the
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linear utilities functions. Moreover, in our case, we lose the uniqueness of
the solution of the consumer maximization problem, which is fundamental
together with the differentiability in the above quoted papers. Nevertheless,
since we consider only linear utility functions, which have a simple represen-
tation, it is possible to develop a sensitivity analysis by introducing them as
parameters of the economy.

Topological properties such as the upper and lower semicontinuity of
the equilibrium price and allocation correspondences have been studied in
Bonnisseau–Florig–Jofré (Ref. 7), where we also find a discussion of the
interest and the applications of linear exchange economies. Furthermore,
the sets of economies such that the equilibrium price (up to positive scale
multiplication) or allocation is unique have been characterized. Here, we
will concentrate on the set of strictly positive utility vectors and endowments
in order to study the differentiability properties of both the equilibrium
price and the equilibrium allocation mapping.

Although Cornet (Ref. 8) proved that an equilibrium is a solution of a
convex program with the utility vectors and the initial endowments appear-
ing as parameters, the sensitivity analysis tools coming from optimization
cannot be applied. At present, the results assume some strong second-order
information and sometimes the uniqueness of the optimal solution, which
are not satisfied in our case. Besides this, our approach leads to locally
explicit formulas for the equilibrium prices and allocations. This is also one
of the reasons why we do not apply the approach of algebraic geometry
using the algebraic structure of linear exchange economies (see Ref. 9).

By using the special properties of linear utility functions, we charac-
terize an open dense subset of the space of utility vectors and initial endow-
ments of full Lebesgue measure, called the space of regular economies. On
the set of regular endowments, the equilibrium price vector is an infinitely
differentiable function of the initial endowments if the utility functions are
fixed. In the case where both the utility vectors and endowments vary, the
result remains true if the equilibrium allocation is unique. The set of regular
allocations with a unique equilibrium allocation is also open, dense, and of
full Lebesgue measure. Then, one deduces that the equilibrium price is a
locally Lipschitzian function on the whole space. These results are a conse-
quence of a formula which gives explicitly the equilibrium price vector near
a regular allocation. As a by product of this formula, we show that, if
the endowment of one consumer in one good increases, then the relative
equilibrium prices of the other goods increase or remain constant. In other
words, this means that linear exchange economies satisfy a property of gross
substitution. Cheng (Ref. 10) had already the intuition that linear exchange
economies should satisfy this property.
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Note that our purpose in this paper may be seen as the study of the
equilibrium manifold, which is the graph of the mapping associating the
equilibrium price vector to the parameters, i.e., the utility vectors and the
initial endowments. Our results show that the equilibrium manifold is
homeomorphic to the space of parameters and it is locally almost every-
where an infinitely differentiable submanifold. In the standard case (for
strictly quasiconcave differentiable utility functions), the manifold is glo-
bally an infinitely differentiable submanifold of this space, but this is not
true for linear economies.

In order to obtain the explicit formula mentioned above, we use exten-
sively the fact that the equilibrium price vector is unique up to positive scale
multiplication and its continuity with respect to the utility vectors and initial
endowments. Furthermore, the solution of the consumer maximization
problem, that is, the demand, has a particular structure, since it may be
positive only for the commodities which give the maximum ratio between
prices and marginal utilities. Consequently, with each equilibrium price vec-
tor, we can associate a correspondence defined on the set of consumers into
the set of commodities, which plays an important role in the proof. Indeed,
it allows us to find a finite partition of the set of utility vectors and initial
endowments and to study the behavior of the equilibrium price vector on
each component. The fact that the set of regular endowments is a full
Lebesgue measure subset is a consequence of the semialgebraic structure of
the equilibrium manifold.

In Section 2, we introduce the model and recall some properties of
linear exchange economies. In Section 3, we establish explicit formulas for
the equilibrium price mapping and the equilibrium allocation mapping in
terms of the initial endowments and utility vectors. Section 4 is devoted to
the proofs of the main results as a consequence of these formulas.

2. Model and Properties of Linear Exchange Economies

We consider a linear exchange economy with nonempty finite sets LG

{1, . . . , l } of commodities and IG{1, . . . , m} of consumers. The consump-
tion set of consumer i, i ∈ I, is Rl

+ and his utility function ui : R
l
+→R is

defined by

ui (xi )Gbi · xi

for some given vector bi ∈ Rl
++. His initial endowment is a vector ωi in

Rl
++. For each (b, ω) ∈ ((Rl

++)
m )2, L (b, ω) denotes the linear exchange econ-

omy associated to the parameters b and ω.
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We now recall standard definitions and some known results. Their
proofs can be found for example in either Bonnisseau–Florig–Jofré (Ref.
7), Cornet (Ref. 8), or Gale (Refs. 11–13).

Definition 2.1.

(i) If p ∈ Rl
++ is a price vector, the demand of the i th consumer,

denoted d (bi , p, p · ωi ), is the set of solutions of the following
maximization problem:

max ui (xi )Gbi · xi ,

p · xi⁄p · ωi ,

xi¤0.

(ii) A Walras equilibrium of L (b, ω) is an element (x, p) ∈
(Rl

+)
mBRl

+ such that:

(a) for every i, xi ∈ d (bi , p, p · ωi );
(b) ∑m

iG1 xiG∑m

iG1 ωi .

For every (b, ω) ∈ (Rl
++)

mB(Rl
++)

m, we denote by X (b, ω) the set of
Walras equilibrium allocations in (Rl

+)
m and by P(b, ω) the set of Walrasian

equilibrium price vectors in Rl
++.

For consumer i, the marginal rate of substitution between the com-
modities h and k, denoted r(bi , h, k), is bih�bik . For each p ∈ Rl

++, let

δ(bi , p)G{h ∈ {1, . . . , l}�ph⁄r(bi , h, k)pk , ∀ kG1, . . . , l}.

For h ∈ δ(bi , p), the ratio between the marginal utility and the price is maxi-
mal. Thus, δ(bi , p) is a set of commodities that consumer i wishes to con-
sume if the price vector is p. Let (h be the vector of Rl whose coordinates
are equal to 0, except the hth coordinate, which is equal to 1.

Proposition 2.1.

(i) For all (b, ω) ∈ ((Rl
++)

m )2, for all p ∈ Rl
++, for each i ∈

I, d (bi , p, p · ωi ) is the convex hull of the points

((p ·ωi�ph )(
h )h ∈ δ(bi ,p ) .

(ii) The correspondence X: ((Rl
++)

m )2→(Rl
+)

m is upper semicontinu-
ous and has nonempty, convex, and compact values.

(iii) For all (b, ω) ∈ ((Rl
++)

m )2, P(b, ω) is a half line of Rl
++, and if we

choose a good h as numéraire, then the mapping p: ((Rl
++)

2→Rl
++

defined by ph (b, ω)G1 and p(b, ω) ∈ P(b, ω) is continuous.
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Note that the nonemptiness of the correspondence X is equivalent to
the fact that the economy L (b, ω) has an equilibrium. (iii) means that the
equilibrium price vector is unique up to positive scale and is continuous
when a normalization is chosen. Let û be the indirect utility function of the
ith consumer; that is, the mapping from Rl

++BRl
++BR to R defined by

û(bi , p, wi )Gwi max{bih�ph �hG1, . . . , l}.

The uniqueness of the equilibrium price vector does not imply that X (b, ω)
is reduced to a singleton. Nevertheless, for all (b, ω) ∈ ((Rl

++)
m)2 and each i,

the equilibrium utility level of consumer i is unique and is equal to
û(bi , p(b, ω), p(b, ω) · ωi ).

We now introduce two subsets of IBL, associated to the equilibrium
of L (b, ω), which are used extensively in the following. Let p(b, ω); then,

G(b, ω)G{(i, h) ∈ IBL �h ∈ δ(bi , p(b, ω))},

G+(b, ω)G{(i, h) ∈ IBL � ∃ x ∈ X (b, ω), xihH0}.

One checks easily that G(b, ω) does not depend on the choice of p(b, ω) in
P(b, ω). Since X (b, ω) is convex, there exists x ∈ X(b, ω) such that xihH0 for
all (i, h) ∈ G+(b, ω). Proposition 2.1(i) implies that G+(b, ω) ⊂ G(b, ω). Fur-
thermore, note that G+(b, ω) [resp. G(b, ω)] may be seen as a graph where
the set of vertices is IBL and there exists an edge between the vertices i and
h if and only if (i, h) ∈ G+(b, ω) [resp. (i, h) ∈ G(b, ω)].

The following proposition gives a necessary and sufficient condition for
the uniqueness of the equilibrium allocation.

Proposition 2.2. Let (b, ω) in ((Rl
++)

m )2. X(b, ω) is a singleton if and
only if the graph G+(b, ω) has no (nondegenerate) cycle; that is, there does
not exist a finite family ((i1, h1), . . . , (in , hn )) of two-by-two different
elements of IBL such that (iν , hν) and (iν , hνC1) belong to G+(b, ω), where
hnC1Gh1.

Let B be the set of elements b ∈ (Rl
++)

m such that, for all finite family
of two-by-two different elements of IBL, ((i1, h1), . . . , (in , hn )),

∏
n

νG1

(biνhν�biνhûC1)≠1.

Then, Proposition 2.2 implies that, for all (b, ω) ∈ B B(Rl
++)

m, X(b, ω) is a
singleton. Note that B is an open dense subset of (Rl

++)
m.

The following lemma states the properties of the local behavior of
the sets G+(b, ω). The result depends on whether b is fixed or not. For
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y ∈ (Rl
++)

m and rH0, let

B ( y, r)G�y′ ∈ (Rl
++)

m� ∑
i ∈ I

��yiAy′i ��Fr� .

Lemma 2.1.

(i) For every (b, ω) in ((Rl
++)

m )2, there exists rH0 such that, for all
ω′∈ B (ω, r), G+(b, ω) ⊂ G+(b, ω′ ).

(ii) For every (b, ω) in ((Rl
++)

m )2, there exists rH0 such that, for all
(b′, ω′ ) ∈ (B (b, r)BB (ω, r)), G+(b, ω) ⊂ G+(b′, ω′ ) if and only if
X(b, ω) is a singleton.

3. Explicit Formula for Equilibria

The computability of linear exchange economies has been studied
before by Eaves (Ref. 14). He proposes a finite algorithm which computes,
for any (b, ω), a Walras equilibrium (x, p) ∈ X(b, ω)BP(b, ω). Nevertheless,
this method does not seen to allow for any conclusions on the behavior of
the equilibrium price and the equilibrium allocation as a function of the
fundamentals of the economy. In this section, we show that the equilibrium
price vector can be obtained by an explicit formula which depends on the
utility functions and the initial endowments. In the case where the equili-
brium allocation is unique, we also show how to compute this allocation,
when the equilibrium price vector is known. Actually, we exhibit a finite
number of algebraic mappings and the equilibrium price vector is always
given by one of these mappings. To choose the right one, it suffices to know
the graph G(b, ω), or more precisely the connected components of this
graph. For this purpose, we introduce some notations.

Let C be the finite set of the correspondences from I to L. With each
economy (b, ω), we associate the correspondence C such that GCGG(b, ω),
where GC is the graph of C. Conversely, for each C ∈ C , let

ΩCG{(b, ω) ∈ ((Rl
++)

m )2 �GCGG(b, ω)}.

We denote by Cr the subset of the elements C of C such that ΩC is non-
empty. Note that (ΩC )C ∈ Cr is a finite partition of ((Rl

++)
m )2.

Let us now consider a fixed element C ∈ Cr . We consider the graph with
the set of vertices IBL. There exists an edge between the vertices i and h if
and only if h ∈ C (i). We denote by G1

C , . . . , Gn
C the connected components

of this graph and by I
C
1 , . . . , I

C
n [resp. H

C
1 , . . . , H

C
n ] the projection of

G1
C , . . . , Gn

C on I [resp. L].
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Since C ∈ Cr , there exists (b, ω) ∈ ((Rl
++)

m )2 which is associated with C.
Therefore, from the definitions of GC and the definition of an equilibrium,
I

C
1 , . . . , I

C
n [resp. H

C
1 , . . . , H

C
n ] is a partition of I [resp. L]. For each z ∈

Rl and for each ν ∈ {1, . . . , n}, we denote by zν the restriction of z to the

components in H
C
ν .

We obtain the formula in two steps. The following lemma shows that,
if two economies are associated with the same graph, then the restrictions
of the equilibrium price vectors to each subset of the partition of the set of
commodities are proportional.

Lemma 3.1. For all C ∈ Cr , there exists an algebraic mapping πC from
(Rl

++)
m to Rl

++ such that, for all (b, ω) ∈Ω C, for all νG1, . . . , n, pν (b, ω) is
proportional to πCν(b).

Proof. For each νG1, . . . , n, let hν ∈ H
C
ν . From the definition of a

connected component, for each h ∈ H
C
ν , there exists q consumers i1, . . . , iq

and qA1 goods h1, . . . , hqA1 such that, for each kG1, . . . , q,

hkA1 ∈ C (ik ) and hk ∈ C (ik ),

where h0Ghν and hqGh.
We now define the mapping πC as follows. For each b ∈ (Rl

++)
m, for each

νG1, . . . , n, for each h ∈ H
C
ν ,

(πC (b))hG�1, if hGhν,

∏q

kG1 rik (bik , hk , hkA1), where h0Ghν and hqGh, if h≠hν.

Let (b, ω) ∈Ω C. Recalling the fact that GCGG(b, ω) and recalling the
definition of δ(bi , p), for each kG1, . . . , q, we have

bikhkA1 �phkA1(b, ω)Gbikhk�phk (b, ω).

Thus, for all νG1, . . . . , n,

pν (b, ω)Gphν(b, ω)πCν(b),

which ends the proof of the lemma. �

Now, we can state the main result of this section.
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Proposition 3.1. For all C ∈ Cr , for all (b, ω) ∈ ((Rl
++)

m )2, let T C (b, ω) be
the nBn matrix defined by

tC
νµ (b, ω)G�πCν(b) · � ∑

i ∉ I
C
ν

ων
i � , if νGµ,

−πCµ(b) · � ∑
i ∈ I

C
ν

ωµ
i � , if ν≠µ.

Then, for all C ∈ Cr , for all (b, ω) ∈Ω C, p is an equilibrium price vector of
L (b, ω) if and only if there exists λ ∈ Rn

++ in the kernel of T C (b, ω) such
that, for all ν ∈ {1, . . . , n}, pνGλ νπCν (b).

This result gives an explicit formula to compute the equilibrium price
vector. Actually, when we have no information about the equilibrium price
vector, this result gives a finite number of possibilities for the equilibrium
price vector. This number may be large, since it is of the same level as the
number of correspondences between I to L. Nevertheless, if we know the
correspondence C which is associated with the economy L (b, ω), that is, if
we know the commodities desired by the consumers at equilibrium, then
one has a unique formula.

Proof of Proposition 3.1. Let (b, ω) ∈Ω C. From Lemma 3.1, we deduce
that there exists λ (b, ω) ∈ Rn

++ such that

pν (b, ω)Gλ ν (b, ω)πCν(b),

for all ν. We now show that λ (b, ω) belongs to the kernel of TC (b, ω). For
this, we use the Walras law (that is, the value of the equilibrium allocation
of each consumer is equal to the value of his initial endowment) and the
market clearing equation (that is, the sum of the equilibrium allocations is
equal to the sum of the initial endowments). Furthermore, we use the fact
that the equilibrium allocation of a consumer in the component I

C
ν is posi

tive only for the commodities in H
C
ν .

Let (x, p(b, ω)) be an equilibrium of L (b, ω). For all i ∈ I,

p(b, ω) · xiGp(b, ω) · ωi .

Furthermore, recalling the fact that GCGG(b, ω), one has, for all νG
1, . . . , n and all h ∈ H

C
ν ,

xihG0, if i ∉ I
C
ν .
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Consequently,

∑
i ∈ I

C
ν

xihG ∑
m

iG1

ωih .

For all h ∉ H
C
ν ,

∑
i ∈ I

C
ν

xihG0.

Then, one deduces that

p(b, ω) · ∑
i ∈ I

C
ν

xiGp(b, ω) · ∑
i ∈ I

C
ν

ωiG ∑
n

µG1

λ µ(b, ω)πCµ(b) · � ∑
i ∈ I

C
ν

ωµ
i � .

On the other hand,

p(b, ω) · ∑
i ∈ I

C
ν

xiGpν (b, ω) · ∑
i ∈ I

C
ν

xν
i

Gpν (b, ω) · ∑
m

iG1

ων
i

Gλ ν (b, ω)πCν(b) · ∑
m

iG1

ων
i .

From the above equalities, one deduces that, for all νG1, . . . , n,

λ ν (b, ω)πCν(b) · ∑
m

iG1

ων
i G ∑

n

µG1

λ µ(b, ω)πCµ(b) · � ∑
i ∈ I

C
ν

ωµ
i � ,

or equivalently,

A ∑
µ≠ν

λ µ(b, ω)πCµ(b) · � ∑
i ∈ I

C
ν

ωµ
i �Cλ ν (b, ω)πCν(b) · � ∑

m

iG1

ων
iA ∑

i ∈ I
C
ν

ων
i �G0.

Since

∑
m

iG1

ων
iA ∑

i ∈ I
C
ν

ων
i G ∑

i ∉ I
C
ν

ων
i ,

one has

T C (b, ω)λ (b, ω)G0.

Conversely, we remark that the rank of T C (b, ω) is nA1, since the sum of
the columns is zero and since the matrix T C

ν̄ (b, ω), which is the submatrix
of T C (b, ω) obtained by suppressing the ν̄th column and the ν̄th row is
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regular; see the proof of Corollary 3.1. Therefore, the kernel of T C (b, ω) is
a one-dimensional subspace of Rn. If λ is a positive element of the kernel
of T C (b, ω), then λ is positively proportional to λ (b, ω). Hence, the vector
p defined by pνGλ νπCν (b) is positively proportional to p(b, ω). Conse-
quently, p is an equilibrium price vector of L (b, ω). �

In the following corollary, we give a formula when a good is chosen as
numéraire.

Corollary 3.1. Let h ∈ {1, . . . , l} be the commodity chosen as
numéraire. For all C ∈ Cr , let ν̄ ∈ {1, . . . , n} such that h ∈ H

C
ν̄ . Then, for all

(b, ω) ∈Ω C, the equilibrium price vector p(b, ω) of L (b, ω), which satisfies
ph (b, ω)G1, is given by the following formula:

p ν̄(b, ω)G[1�πC
h (b)]πCν̄(b)

and, for all ν≠ν̄,

pν (ω)Gλ ν (b, ω)πCν(b),

where (λ ν (b, ω))ν≠ν̄ is defined by

(λ ν (b, ω))ν≠ν̄G−[1�πC
h (b)](T C

ν̄ (b, ω))−1(tC
νν̄ (b, ω))ν≠ν̄ ,

where the matrix T C
ν (b, ω) is the (nA1)B(nA1) submatrix of T C (b, ω)

obtained by suppressing the ν̄th column and the ν̄th row. Moreover, all the
elements of the matrix (T C

ν (b, ω))−1 are nonnegative.
When a commodity is chosen as numéraire, the mapping which gives

the unique equilibrium price vector is algebraic, since it is an algebraic com-
bination of πC, which is algebraic, and λ ν , which is also algebraic since the
matrix T C [hence, (T C

ν )−1] is algebraic. This can be deduced from general
results of algebraic geometry. However, the explicit formula is not a by-
product of this general approach.

Proof of Corollary 3.1. Let T C
ν̄ (b, ω) be the (nA1)B(nA1) submatrix

of T C (b, ω) obtained by suppressing the ν̄th column and the ν̄th row. First,
we remark that the matrix T C

ν̄ (b, ω) is regular. Indeed, the elements on the
diagonal are positive, the others elements are negative, and for all ν≠ν̄,

∑
µ≠ν̄

tC
µν (b, ω)GπCν(b) · � ∑

i ∉ I
C
ν

ων
iA ∑

µ≠ν̄
µ≠ν

∑
i ∈ I

C
µ

ων
i �

GπCν(b) · ∑
i ∈ I

C
ν̄

ων
iH0.
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Hence, the matrix T C
ν̄ (b, ω) is strictly diagonal dominant. Therefore, the

system of equations given in the above statement has a unique solution.
From Proposition 3.1, we know that the equilibrium price vector p(b, ω)
satisfying ph (b, ω)G1 is a solution. Consequently, p(b, ω) is the unique solu-
tion of the system.

Finally, a standard result on diagonal dominant matrices allows us to
show that the elements of (T C

ν (b, ω))−1 are nonnegative; see for example
Ref. 15. �

In the following corollary, we extend the above result to the closure of
ΩC.

Corollary 3.2. Let h ∈ {1, . . . , l} be the commodity chosen as
numéraire. For all C ∈ Cr , let ν̄ ∈ {1, . . . , n} be such that h ∈ H

C
ν̄ . Then, for

all (b, ω) ∈Ω¯ C, the closure of ΩC in ((Rl
++)

m)2, the equilibrium price vector
p(b, ω) of L (b, ω) which satisfies ph (b, ω)G1, is given by the following
formula: pν̄ (b, ω)G[1�πC

h (b)]πCν̄ (b) and, for all ν≠ν̄, pν (b, ω)G
λ ν (b, ω)πCν (b), where (λ ν (b, ω))ν≠ν is defined by

(λ ν (b, ω))ν≠ ν̄G−[1�πC
h (b)](T C

ν̄ (b, ω))−1(tC
νν̄ (b, ω))ν≠ν̄ .

Proof. Let (b, ω) ∈Ω¯ C. There exists a sequence (bq, ωq ) of ΩC which
converges to (b, ω). Since the equilibrium price vector is continuous,
(p(bq, ωq )) converges to p(b, ω). Furthermore, the matrix (T C

ν̄ ( · ))−1 is con-
tinuous with respect to (b, ω) and p(bq, ωq ) is the unique solution of the
linear system given in Corollary 3.1. Therefore, by a continuity argument,
p(b, ω) is also the unique solution of the system of equations given in Cor-
ollary 3.2. �

From the above result, we can deduce the following global behavior of
the equilibrium price vector.

Corollary 3.3. The mapping p( · , · ) is locally Lipschitzian on
((Rl

++)
m )2.

In the standard case, with strictly quasiconcave utility functions, the
uniqueness of the equilibrium price vector implies a Lipschitzian behavior
only if all the initial endowments are regular in the sense of differential
geometry. Thus, the linear exchange economies have this special property,
which allows us to use the tools of nonsmooth analysis in this framework
like in Bonnisseau–Florig (Ref. 16).
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Proof of Corollary 3.3. From Corollary 3.2, the mapping p( · , · ) is
locally Lipschitzian on Ω̄C as the restriction of a nondegenerate algebraic
mapping and (Ω̄C )C ∈ Cr is a finite closed covering of ((Rl

++)
m )2. Therefore,

Corollary 3.3 is a direct consequence of the following result. Its proof is left
to the reader. �

Lemma 3.2. Let U be an open subset of a finite-dimensional Euclidean
space E. Let F1, . . . , Fn be n closed (for the topology of U ) subsets of U
such that UG*

n
kG1 Fk . For all kG1, . . . , n, let fk be a locally Lipschitzian

mapping from Fk to a finite Euclidean space G. For all x ∈ U, let K (x)G
{k ∈ {1, . . . , n} �x ∈ Fk}. We assume that, for all x ∈ U, for all k, k′ ∈ K (x),
fk (x)Gfk′ (x). Let f be the mapping from U to G, defined by f (x)Gfk (x) for
some k ∈ K (x). Then, f is locally Lipschitzian on U.

Now, we come to the computation of the equilibrium allocation when
it is unique. If (b, ω) is such that X(b, ω) is a singleton, then from Prop-
osition 2.2, the graph G+(b, ω) has no cycle. Consequently, each connected
component is a tree, and we shall use this property to find the equilibrium
allocation. Note that, to compute the unique allocation x ∈ X(b, ω), it
suffices to find xih for (i, h) ∈ G+(b, ω), since the other components are equal
to 0.

Let S be the set of element (b, ω) ∈ ((Rl
++)

m )2 such that X (b, ω) is a
singleton. We consider the correspondence C such that its graph is G+(b, ω).

Conversely, for each C ∈ C , let

ΩC
+ G{(b, ω) ∈ S �GCGG+(b, ω)},

where GC is the graph of C. We denote by C̄+ the subset of the elements C
of C such that ΩC

+ is nonempty. Note that (ΩC
+)C ∈ Cr + is a finite partition

of S .

Proposition 3.2. For all C ∈ Cr +, there exists an algebraic mapping xC

from Rl
++B(Rl

++)
m to (Rl )m such that, for each (b, ω) ∈Ω C

+ , the unique
element of X (b, ω) is xC (p(b, ω), ω).

Proof. Let C ∈ Cr +, and let G1
C , . . . , Gn

C be its connected components.
From Proposition 2.2, each component has no cycle, hence it is a tree. We
define the mapping xC component-by-component and by induction on the
number of elements in each component.

First, we let xC
ih (p, ω)G0 if (i, h) does not belong to the graph of C. If

(i, h) is in the graph of C, then i and h belong to a component Gν
C . If
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Gν
CG{i, h}, this means that the ith consumer consumes only the hth com-

modity and he is the only one who consumes this commodity. In that case,
we let

xC
ih (p, ω)G ∑

m

iG1

ωih .

If Gν
C has more than two elements, then we associate the real number

wi (p, ω)Gp · ωi

to the vertex i and

wh (p, ω)G ∑
m

iG1

ωih

to the vertex h. Since Gν
C is a tree, it has a terminal node. If this node is an

element i of I, there exists h ∈ L such that the edge (h, i ) relies i to the tree.
This means that consumer i consumes only the hth commodity. In that case,
we let

xC
ih (p, ω)Gwi (p, ω)�ph .

Then, we consider the subtree obtained from Gν
C be deleting the vertex i and

the edge (h, i ), and we replace wh (p, ω) by wh (p, ω)Awi (p, ω)�ph .
If the terminal node is an element h of L, there exists i ∈ I such that the

edge (i, h) relies h to the tree. This means that the hth commodity is con-
sumed only by the ith consumer. In that case, we let

xC
ih (p, ω)Gwh (p, ω),

we consider the subtree obtained from Gν
C by deleting the vertex h and the

edge (i, h), and we replace wi (p, ω) by wi (p, ω)Aphwh (p, ω). In the two
cases, one obtains a subtree with one less vertex. Consequently, in a finite
number of steps, one defines a mapping xC for each element (i, h) in the
graph of C, which is algebraic since the operations are algebraic at each
step.

To prove that xC (p(b, ω), ω) is the unique element of X (b, ω) for each
(b, ω) ∈Ω C

+ , it suffices to follow the steps which yield xC and to check that
the market clearing condition and the Walras law imply that, for each (i, h)
in the graph of C, the equilibrium allocation xih is given by
xC

ih (p(b, ω), ω). �

4. Regular Economies and Differentiability of the Equilibrium Price Vector

In this section, we define a class of economies, called regular economies,
which have the nice property that, if the equilibrium allocation is unique,
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then the equilibrium price vector is a nondegenerate algebraic mapping
(hence, real analytic) in a neighborhood of it. We prove that the set of
economies which satisfy these conditions is open, dense, and of full
Lebesgue measure.

Definition 4.1. The economy L (b, ω) is regular if G+(b, ω)GG(b, ω).

From Proposition 2.1(i), we know that

xihG0, if (i, h) ∉ G(b, ω).

An economy is regular if, at least for one equilibrium allocation, each con-
sumer has a positive amount of all the commodities which lead to the best
ratio between the marginal utility and the price. In the example given in
Section 4 of Bonnisseau–Florig–Jofré (Ref. 7), we remark that some alloca-
tions satisfy this condition, but not all allocations. By Eaves (Ref. 14) and
Bonnisseau–Florig–Jofré (Ref. 7), it is possible to construct G+(b, ω) and
G(b, ω) for any economy by applying a finite algorithm. For any economy,
hence it is possible to check whether it is regular or not.

Let us define the equilibrium manifold M ⊂ ((Rl
++)

m )2BRl
++ as the

graph of the mapping (b, ω)→p(b, ω) and, for each b ∈ (Rl
++)

m, let

M bG{(ω, p(b, ω)) ∈ (Rl
++)

mBRl
++� (b, ω, p(b, ω)) ∈ M }.

We can consider the projection from M to ((Rl
++)

m )2 which associates (b, ω)
with (b, ω, p(b, ω)) and the restriction of this projection at M b when the
utility vector b is fixed. Theorem 4.1 below implies that M b is a CS

submanifold in a neighborhood of (ω, p(b, ω)) when the economy L (b, ω)
is regular. Moreover, for a regular economy L (b, ω), the vector ω is a
regular value of the restriction of the projection in the standard sense of
differential geometry. This explains why we use the word ‘‘regular’’ to define
these economies just as in the papers dealing with strictly quasiconcave util-
ity functions. If L (b, ω) is regular and has a unique equilibrium allocation,
then M is a CS submanifold in a neighborhood of (b, ω, p(b, ω)).

In the remainder of this section, we assume implicitly that one good is
chosen as numéraire. Then, p(b, ω) denotes the unique equilibrium price
vector of the economy L (b, ω) which satisfies the normalization.

We now establish the first main result. We denote by Ω the set of
elements (b, ω) such that L (b, ω) is regular, by S the set of elements (b, ω)
such that X (b, ω) is a singleton and, for every b ∈ (Rl

++)
m, by Ωb the set of

elements ω∈ (Rl
++)

m such that (b, ω) ∈Ω . In the following, we distinguish the
cases where the utility vectors bi are either fixed or not fixed.
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Theorem 4.1.

(i) For all (br , ω̄) ∈Ω ∩ S , there exists rH0 such that
B (br , r)BB (ω̄, r) ⊂ Ω ∩ S , and, for all (b, ω) ∈ B (br , r)BB (ω̄, r),

G(b, ω)GG(br , ω̄).

The set Ω ∩ S is a semialgebraic open dense subset of ((Rl
++)

m )2

and, consequently, ((Rl
++)

m )2 \ (Ω ∩ S ) is a set of Lebesgue meas-
ure 0.

(ii) for all br ∈ (Rl
++)

m, for all ω∈Ω br , there exists rH0 such that
B (ω̄, r) ⊂ Ω br and, for all ω∈ B (ω̄, r),

G(br , ω)GG(br , ω̄).

The set Ωbr is a semialgebraic open dense subset of (Rl
++)

m and,
consequently, (Rl

++)
m \ Ωbr is a set of Lebesgue measure 0.

Now, we can state the results which give the local properties of the
equilibrium price vector. In the following statement, we consider the corre-
spondence X as a mapping, since X(b, ω) is a singleton on Ω ∩ S .

Theorem 4.2.

(i) For each (br , ω̄) ∈Ω ∩ S , let rH0 as given by Theorem 4.1. Then,
on B (br , r)BB (ω̄, r), the mapping

(b, ω)→(p(b, ω), X (p, ω))

is the restriction of a nondegenerate algebraic mapping from
((Rl

++)
m )2 to Rl

++B(Rl
+)

m. Consequently, the mapping ( p( · , · ),
X ( · , · )) is semialgebraic and real analytic on Ω ∩ S .

(ii) For each br ∈ (Rl
++)

m, for all ω̄ ∈Ω br , let rH0 as given by Theorem
4.1. Then, on B (ω̄, r), the mapping

ω→p(br , ω)

is the restriction of a nondegenerate algebraic mapping from
(Rl

++)
m to Rl

++. Consequently, the mapping p(br , · ) is semialgebraic
and real analytic on Ωbr .

The proof of this result is a direct consequence of Theorem 4.1,
together with the explicit formula given in Proposition 3.1, Corollary 3.2,
and Proposition 3.2. Indeed, the formulas given in Corollary 3.2 and
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Proposition 3.2 remain true on B (br , r)BB (ω̄, r) [resp. B (ω̄, r)], since

G(b, ω)GG+(b, ω)GG(br , ω̄),

[resp. G (br , ω)GG+(br , ω)GG(br , ω̄)],

for each (b, ω) ∈ B (br , r)BB (ω̄, r) [resp. ω∈ B (ω̄, r)], so that p(b, ω) and
X (b, ω) [resp. p(br , ω)] are the restrictions to B (br , r)BB (ω̄, r) [resp. B (ω̄, r)]
of algebraic mappings. This clearly implies that these mappings are real
analytic on Ω ∩ S [resp. Ωbr ].

These results may be compared to the ones given in Refs. 1–6 in which
the main tools are coming from differential topology. They use the fact that
the excess demand function is CS with respect to the prices. We cannot
apply such results to a linear exchange economy, since the demand is not
unique and is not differentiable with respect to the prices.

In the case of general smooth preferences, the implicit function theorem
gives the existence of a function which corresponds to the equilibrium
prices, but does not give an explicit formula. However, by using the particu-
lar structure of linear utility functions, we are able to obtain an explicit
formula for the equilibrium prices. Furthermore, since the space of utility
functions is parametrizable easily in the linear case, the above results take
also into account the dependence of the equilibrium price vector with
respect to the utility functions. In the standard case, one studies only the
dependence with respect to the initial endowments.

In our framework, the fact that the equilibrium allocations have a nice
behavior on Ω ∩ S is not a direct consequence of the behavior of the equi-
librium price vector as in the standard case, since the demand correspon-
dence is not a priori differentiable.

One deduces easily the structure of the equilibrium manifold from the
above results. The continuity and the uniqueness of the mapping p( · , · )
imply that M [resp. M b ] is homeomorphic to ((Rl

++)
m )2 [resp. (Rl

++)
m ].

Furthermore, the image of the set Ω ∩ S [resp. Ωb ] by the mapping
(b, ω)→(b, ω, p(b, ω)) [resp. ω→(b, ω, p(b, ω))] is an open dense subset of
M [resp. M b ], and M [resp. M b ] is a C

S submanifold of ((Rl
++)

m )2BRl
++

[resp. (Rl
++)

mBRl
++] around every point in this set.

Proof of Theorem 4.1. In the following, we give the arguments for
part (i) and we just suggest the differences for part (ii), since they are almost
the same. Let (br , ω̄) ∈Ω ∩ S [resp. ω̄ ∈Ω br ]. By the regularity of the initial
endowment, one has

G+(br , ω̄)GG(br , ω̄).
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The continuity of the mapping p( · , · ) and the definition of G( · , · ) imply
that there exists ρH0 such that G(b, ω) ⊂ G(br , ω̄) for all (b, ω) ∈
B (br , ρ)BB (ω̄, ρ) [resp. ω∈ B (ω̄, ρ)]. From Lemma 2.1, one deduces that
there exists r ∈ ]0, ρ[ such that, for all (b, ω) ∈ B (br , r)BB (ω̄, r) [resp. ω∈
B (ω̄, r)], G+(br , ω̄) ⊂ G+(b, ω) [resp. G+(br , ω̄) ⊂ G+(br , ω)]. Consequently, for
all (b, ω) ∈ B (br , r)BB (ω̄, r) [resp. ω∈ B (ω̄, r)], one has

G+(b, ω) ⊂ G(b, ω) ⊂ G(br , ω̄)GG+(br , ω̄) ⊂ G+(b, ω)

[resp. G+(br , ω) ⊂ G(br , ω) ⊂ G(br , ω̄)GG+(br , ω̄) ⊂ G+(br , ω)].

Hence,

G+(b, ω)GG(b, ω)GG(br , ω̄)

[resp. G+(br , ω)GG(br , ω)GG(br , ω̄)].

This implies that (b, ω) ∈Ω [resp. (br , ω) ∈Ω br ]. Finally, for all (b, ω) ∈
B (br , r)BB (ω̄, r), G+(b, ω) is locally constant; hence, from Proposition 2.2,
X (b, ω) is a singleton, or equivalently, (b, ω) ∈ S . This ends part (i) of the
proof.

Now, we come to the proof of the second part. The fact that Ω
[resp. Ωbr ] is an open subset of ((Rl

++)
m )2 [resp. (Rl

++)
m ] is a direct consequence

of the first part.
Now we show that Ω ∩ S is dense in ((Rl

++)
m )2. For this, we use the

fact that the set B , defined after Proposition 2.2, is dense in (Rl
++)

m. Let
(b, ω) ∈ ((Rl

++)
m )2 and rH0. Then, there exists b′ ∈ B (b, r) ∩ B . For tH0

small enough, ωt defined by

ωt
iGωiCt ∑

h � (i,h) ∈ G(b′,ω)

(h, for all iG1, . . . , m,

belongs to B (ω, r). It suffices to show that (b′, ωt ) ∈Ω ∩ S . X (b′, ωt ) is a
singleton, since b′ ∈ B . Let (x, p(b′, ω)) be an equilibrium of L (b′, ω). Let
xt ∈ (Rl

+)
m be defined by

xt
iGxiCt ∑

h � (i,h) ∈ G(b′,ω)

(h, for all iG1, . . . , m,

One checks that (xt, p(b′, ω)) is an equilibrium of L (b′, ωt ), since the alloca-
tions of the consumers increase for only the commodities which are desired
for the price p(b′, ω). Hence, (b′, ωt ) ∈Ω , since xt

ihH0, for each (i, h) ∈
G(b′, ω)GG(b′, ω′ ).

To prove that Ωbr is dense, it suffices to use the second part of the above
argument. Using the notation of the previous section, let C ∈ Cr . To show
that Ω ∩ S is semialgebraic, we use the following lemma.

Lemma 4.1. For each C ∈ Cr , ΩC is a semialgebraic subset of ((Rl )m )2.
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The proof of this lemma is given in the Appendix. Note that this lemma
implies that, for each C ∈ Cr , for each br ∈ (Rl

++)
m, the set

ΩC
br G{ω∈ (Rl

++)
m � (br , ω) ∈Ω C}

is a semialgebraic subset of (Rl
++)

m.

We now claim that

Ω ∩ S G *
C ∈ Cr

int ΩC �resp. ΩbrG *
C ∈ Cr

int ΩC
br 	 .

Let (br , ω̄) ∈Ω ∩ S [resp. ω̄ ∈Ω br ], and let C such that (br , ω̄) ∈Ω C [resp. ω̄ ∈
ΩC

br ]. From the first part of the proof, there exists rH0 such that, for all
(b, ω) ∈ B (br , r)BB (ω̄, r) [resp. ω∈ B (ω̄, r)],

G(b, ω)GG(br , ω̄) [resp. G(br , ω)GG(br , ω̄ )].

Consequently, from the definition of ΩC, B (br , r)BB (ω̄, r) ⊂ Ω C [resp.
B (ω̄, r) ⊂ Ω C

br ]; hence,

(br , ω̄) ∈ int ΩC [resp. ω̄ ∈ int ΩC
br ].

Conversely, let C ∈ Cr , and let (br , ω̄) ∈ int ΩC. From the density of B , one
deduces that there exists b′ ∈ B such that (b′, ω̄) ∈ int ΩC.

For tH0, let ωt be defined by

ωt
iGω̄iAt ∑

h � (i,h) ∈ GC

(h, for all iG1, . . . , m.

For t small enough, (br , ωt ) and (b′, ωt ) belong to ΩC. Let (xt, p(br , ωt )) be
an equilibrium of L (br , ωt ), and let (x′t, p(b′, ωt )) be an equilibrium of
L (b′, ωt ). Since

GCGG(br , ωt )GG(b′, ωt ),

one checks easily that

��xiGxt
iCt ∑

h � (i,h) ∈ GC

(h�
iG1,...,m

, p(br , ωt )�
is an equilibrium of L (br , ω̄) and

��x ′iGx ′ti Ct ∑
h � (i,h) ∈ GC

(h�
iG1,...,m

, p(b′, ωt )�
is an equilibrium of L (b′, ω̄). Therefore, for all (i, h) ∈ G(br , ω̄), xihH0, which
implies that (br , ω̄) ∈Ω . By the same argument, (b′, ω̄) belongs to Ω. Since
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b′ ∈ B , (b′, ω̄) belongs also to S . Consequently, from Proposition 2.2,
G+(b′, ω̄) has no cycle. But since (b′, ω̄) and (br , ω̄) belong to Ω, one has

G+(b′, ω̄)GG(b′, ω̄)GGCGG(br , ω̄)GG+(br , ω̄).

Hence, G+(br , ω̄) has no cycle, which implies that (br , ω̄) ∈ S .
To prove that an element ω̄ ∈ int ΩC

br belongs to Ωbr , it suffices to do the
above argument with ωt.

Now, we remark that

((Rl
++)

m )2G *
C ∈ Cr

ΩC �resp. (Rl
++)

mG *
C ∈ Cr

ΩC
br 	.

A straightforward consequence of the stratification theorem for a semi-
algebraic set (see e.g. Ref. 17) is that int ΩC [resp. int ΩC

br )] is semialgebraic
and the Lebesgue measure of ΩC \ int ΩC [resp. ΩC

br \ int ΩC
br ] is equal to 0.

Thus, from the previous lemmas, Ω ∩ S [resp. Ωbr ] is semialgebraic and the
set ((Rl

++)
m)2 \ (Ω ∩ S ) [resp. Rl

++\Ωbr ] is of a measure 0, since it is the disjoint
union of the sets ΩC \ int ΩC [resp. ΩC

br \ int ΩC
br ]. Hence, Ω ∩ S [resp. Ωbr ] is

of full Lebesgue measure in ((Rl
++)

m )2 [resp. (Rl
++)

m ], which ends the proof
of Theorem 4.1. �

Now, we consider the case where the total initial endowment is fixed.
For each z ∈ Rl

++, let Ez be the set defined by

EzG�ω∈ (Rl
++)

m� ∑
m

iG1

ωiGz� .

Then, we obtain the following corollary which shows that the results
of Theorems 4.1 and 4.2 remain true if one restricts the initial endowments
to Ez.

Corollary 4.1.

(i) For each z ∈ Rl
++, the set (Ω ∩ S ) ∩ ((Rl

++)
mBEz ) is a semi-

algebraic open dense subset of ((Rl
++)

mBEz ).
(ii) For every br ∈ (Rl

++)
m, for each z ∈ Rl

++, the set Ωbr ∩ Ez is a semialge-
braic open dense subset of Ez.

In economic applications, we are interested often in a redistribution of
the initial endowments among the consumers for a fixed total endowment.
By applying the above result, one shows that such small redistribution
induces a smooth variation of the equilibrium prices for almost all initial
distributions.
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Proof of Corollary 4.1. The only point to be proved is the density. Let
ω∈ Ez, and let br ∈ Rl

++. From the density of B , there exists b ∈ B in each
neighborhood of br . Now, let (x1, . . . , xm , p(b, ω)) be an equilibrium of
L (b, ω). For all h ∈ L, let i h ∈ I such that xihhH0. Let t0H0 such that

t0Fmin{xihh , ωi hh �hG1, . . . , l }.

For all h ∈ L, let

IhG{i ∈ I � (i, h) ∈ G (b, ω)},

and let mh be the cardinal of Ih . We remark that i h ∈ Ih and mh⁄m. For all
t ∈ [0, 1], we consider the initial endowment ωt defined by: for all i ∈ I, for
all h ∈ L,

ωt
ihG�

ωih , if (i, h) ∉ G(b, ω),

ωihCtt0�m, if (i, h) ∈ G(b, ω) and i≠ i h,

ωihA(mhA1)tt0�m, if iGi h.

We remark that

zG ∑
m

iG1

ωiG ∑
m

iG1

ωt
i

and that ωt
i belongs to Rl

++. Furthermore, let xt ∈ (Rl
+)

m be defined by: for
all i ∈ I, for all h ∈ L,

xt
ihG�

xih , if (i, h) ∉ G(b, ω),

xihCtt0�m , if (i, h) ∈ G(b, ω) and i≠ i h,

xihA(mhA1)tt0�m , if iGi h.

One checks that (xt
1 , . . . , x

t
m , p(b, ω)) is an equilibrium of L (b, ωt ) and that

L (b, ωt ) is a regular economy with a unique equilibrium. Since ωt tends to
ω when t converges to 0, one concludes that (Ω ∩ S ) ∩ (Rl

++BEz ) is dense
in (Rl

++BEz ), proving part (i).
Note that it suffices to do the same argument on the initial endowment

without changing the utility vectors to prove part (ii) of the corollary. �

If we combine the explicit formula given in the previous section and
the results of this section, we are able to determine the sign of the derivative
of the equilibrium price of a commodity when the initial endowment of
one consumer in another commodity changes. This leads to the following
monotonicity property of the equilibrium prices.
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Proposition 4.1. Let h be the commodity chosen as numéraire. For all
br ∈ (Rl

++)
m, for all ω̄ ∈Ω br , for all i ∈ I, and for all k ∈ L, k≠h,

∂pk

∂ωih

(br , ω̄)¤0.

The above result does not depend on the commodity which is chosen
as numéraire. It means that, if the initial endowment of one consumer in
one commodity increases at a regular point, then the relative prices of the
other commodities do not decrease.

Proof of Proposition 4.1. Let br ∈ Rl
++, ω̄ ∈Ω br , i ∈ I, and let k ∈ L, k≠h.

For t ∈ R, let ωt be defined by ωt
i′Gω̄i ′ , if i ′≠ i, and ωt

iGω̄iCt(h. For t close
enough to zero, ωt belongs to B (ω̄, r) as given by Theorem 4.1(ii). Let C be
such that (br , ω̄) ∈Ω C, and let ν̄ be such that h ∈ H

C
ν̄ . We remark that the

matrix T C
ν̄ (br , ωt ), as given by Corollary 3.2, does not depend on t. Moreover

if i ∈ I
C
ν̄ , then

tνν̄ (br , ωt )Gtνν̄ (br , ω̄).

Otherwise,

tνν̄ (br , ωt )Gtνν̄ (br , ω̄)AtπC
h (br).

Furthermore, since h is chosen as numéraire, the prices of the commodities
in H

C
ν̄ do not change and the prices of the other goods are increasing, since

the elements of the matrix (T C
ν̄ (br , ω))−1 are all nonnegative. In the

particular case where i ∈ I
C
ν̄ , nothing changes and the prices remain

constant. This implies that the partial derivative ∂pk
�∂ωih (br , ω̄) is non-

negative. �

Using the definition of the generalized gradient (Ref. 18), one can
obtain a result which holds on the whole space ((Rl

++)
m )2. Let ∂pk (b, ω) be

the generalized gradient of pk at (b, ω) in the sense of Clarke, and let
∂ω pk (b, ω) be the generalized gradient of pk (b, · ) at ω.

Corollary 4.2. Let h be the commodity chosen as numéraire. Let i ∈ I
and k ∈ L, k≠h. For all (br , ω̄) ∈ ((Rl

++)
m )2,

uih¤0, for all u ∈∂ pk (br , ω̄).

Therefore, the mapping pk is nondecreasing with respect to ωih .
Furthermore,

uih¤0, for all u ∈∂ ωpk (br , ω̄).
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In the economic terminology, this result means that a linear exchange
economy satisfies a property of gross substitution. Cheng (Ref. 10) had
already the intuition that linear exchange economies should satisfy this
property. However, his proof depends for example on the claim that, at
equilibrium, there are always agents consuming only one commodity. Of
course, this is not true. Trivial counterexamples can be generated by split-
ting every commodity into two identical commodities.

Proof of Corollary 4.2. The first part of the corollary is a consequence
of Proposition 4.1, Theorem 2.5.1 (Ref. 18, p. 63), since Ω ∩ S [resp. Ωbr ] is
an open dense subset of ((Rl

++)
m )2 [resp. (Rl

++)
m ] of full Lebesgue measure.

The second part is a consequence of the mean-value theorem (Ref. 18,
p. 41). �

5. Appendix: Proof of Lemma 4.1

Let C ∈ Cr . For each i ∈ I, we choose arbitrarily an element hi ∈ C (i). We
denote by pC ( · , · ) the algebraic mapping from ((Rl )m )2 to Rl given by the
formula of Corollary 3.2.

Let (b, ω) ∈ ((Rl )m )2. If (b, ω) belongs to ΩC, then

pC (b, ω)Gp(b, ω).

Therefore, there exists x ∈ (Rl
+)

m such that the following system of equalities
and inequalities holds true:

ωihH0 and bihH0, for all (i, h) ∈ IBL, (1)

bihi�pC
hi (b, ω)Gbih�pC

h (b, ω) , for all i ∈ I, for all h ∈ C (i), (2)

bihi�pC
hi (b, ω)Hbih�pC

h (b, ω) , for all i ∈ I, for all h ∉ C (i), (3)

xihG0, for all (i, h) ∉ GC , (4)

xi¤0 and pC (b, ω) · xiGpC (b, ω) · ωi , for all i ∈ I, (5)

∑
i ∈ I

xiG∑
i ∈ I

ωi . (6)

Indeed, (1) means that bi and ωi belong to Rl
++ for all i; (2)–(3) are equiva-

lent with GCGG(b, ω); (4)–(5) are equivalent to xi ∈ d (bi , p
C (b, ω),

pC (b, ω) · ωi ); and (6) implies that x clears the markets in each commodity.
Conversely, if (b, ω, x) satisfies (1)–(6), one deduces easily that

(x, pC (b, ω)) is an equilibrium of L (b, ω). Hence,

pC (b, ω)Gp(b, ω),

and (2)–(3) imply that GCGG(b, ω), which is equivalent with (b, ω) ∈Ω C.
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From above, one deduces that ΩC is a semialgebraic subset
of (Rl )mB(Rl )m, since it is the projection on a set defined by a finite set
of inequalities and equalities, which involve algebraic functions of
(b, ω, x). �
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