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Abstract. According to Mertens (Ref. 1), the set of equilibrium prices

in a linear exchange economy is a convex polyhedral cone (after adding

{0}). We give a constructive proof of this fact. Then, we establish a

lower-semicontinuity property of the equilibrium price correspondence.

The set of equilibrium allocations is a closed, convex polyhedron. We give

a characterization of this set.
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1. Introduction

Linear exchange economies have been studied extensively (Refs. 1–9).

As pointed out in Ref. 6, this model has been applied to a variety of different

economic problems.

In the present paper, we give results on the computability of the set of

Walras equilibria and we deduce a lower-semicontinuity property of the

equilibrium price correspondence. Eaves (Ref. 5) proposed a finite algorithm

computing a Walras equilibrium (provided an equilibrium exists) for any

linear exchange economy. Mertens (Ref. 1, Theorem II.5) proved that the set

of equilibrium prices in linear exchange economies is a convex polyhedral

cone (after adding {0}). Relying on Ref. 5, we give a constructive proof of

this fact. Then, we show that the equilibrium price correspondence stays

lower semicontinuous as long as we do not perturb a certain subset of the
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support of the initial endowments of the consumers. Later, we characterize

the set of equilibrium allocations.

2. Model

We consider a linear exchange economy with finite sets L ” {1, . . . ,L}

of commodities and I ” {1, . . . , I} of consumers. Every consumer is character-

ized by his utility function ui: R+
LfiR, which is defined by ui(xi) = bi . xi for a

given vector bi˛R+
L, and by his initial endowment wi˛R+

L. For each (b,w)˛
(R+

L)2I, L(b,w) denotes the linear exchange economy associated with the par-

ameters b and w. Throughout the paper, we will make the following

assumptions:

(A) (�i Į bi,�i Įwi)˛R++
L ·R++

L ;

(B) for every i, bi„0, wi„0.

Condition (A) means that every good is desired at least by some con-

sumer and owned at least by a consumer and Condition (B) means that every

consumer desires at least one good and owns at least one good.

Definition 2.1.

(i) For p˛RL, the demand of consumer i, denoted d(bi, p, p .wi), is the

set of solutions of the following maximization problem:

max ui(xi) = bi � xi,

s:t: p � xi#p � w i,

xi˛RL
+:

(ii) A Walras equilibrium of L(b,w) is an element (x, p)˛(R+
L)I·RL

such that:

(a) for every i, xi˛d(bi, p, p .wi);

(b) �i Į xi=�i Įwi.

(iii) A proper subset I ¢ of I is called self-sufficient in L(b,w) if, for all

h˛L, �i Į ¢ bih >0 implies �i ĮnI ¢wih = 0.

(iv) A proper subset I¢ of I is called super self-sufficient in L(b,w) if

it is self-sufficient and there exists h˛L such that �i Į¢wih>0, but

�i Į ¢ bih = 0.

A subset of the set of traders is self-sufficient, if they own the whole

quantity of goods they are interested in and it is called super-self-sufficient,
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if they own as well a positive amount of some good which nobody in their

group is interested in.

Let W� (R+
L)I· (R+

L)I denote the set of pairs (b,w) such that no super-

self-sufficient subset exists in L(b,w) and such that conditions (A) and (B)

are satisfied. Under Assumptions (A) and (B), the nonexistence of a super-

self-sufficient set is a necessary and sufficient condition for the existence of a

Walras equilibrium in linear exchange economies (Ref. 4). We denote by U
the set of pairs (b,w)˛W such that L(b,w) has a unique equilibrium price

vector p(b,w) up to a positive scale multiplication.

For every (b,w)˛(R+
L)I· (R+

L)I, we denote by X(b,w)� (R+
L)I the set of

Walrasian equilibrium allocations and by P(b,w)�RL the set of Walrasian

equilibrium price vectors. By Assumption (B), P(b,w)�R++
L .

For the ith consumer, the marginal rate of substitution between the

commodities h and k is bih=bik, where by convention 0=0 = 0 and bih=0 =+O
if bih >0. For each p˛R++

L ,

d (bi, p) = {h˛Ljph#pk(bih=bik), 8k˛L}:

d (bi, p) is the set of commodities that the consumer wishes to consume if the

price vector is p, since the ratio between the marginal utility and the price is

maximal for these commodities. For y˛Rn, we denote by

supp( y) = {h˛{1, . . . , n}jyh„0}

the support of y.

3. Computation of Equilibrium Prices

We recall first a necessary and sufficient condition for P(b,w) being a

half line. It is proven in Ref. 7.

Proposition 3.1. Let (b,w)˛W and let p˛P(b,w). Then, (b,w)˛U if

and only if the economy L(c( p),w), defined by

cih( p)=
bih, if h˛d (bi, p),

0, otherwise,

�

has no proper self-sufficient subset.

Partition of the Economy. We will construct a partition I1, . . . , Ik of

I and L1, . . . ,Lk such that P(b,w) is generated by the equilibrium prices

of the subeconomies restricted to Ir·Lr, which are unique up to a positive

scale multiplication.
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By applying Ref. 5, it is possible to compute a Walras equilibrium

(x, p)˛X(b,w)·P(b,w) in a finite number of steps. Now, P(b,w) may be

computed as follows.

Let c = c( p) be as in Proposition 3.1. Let I1
1, . . . , I1k1

be minimal

self-sufficient subsets of L(c,w). For all r$1, let I1
r, . . . , Irkr be minimal self-

sufficient subsets of the economy Lr(c,w), which is obtained from L(c,w)

by restricting the economy to

I

- [r–1
s=1

Is

( )
·L

- [r–1
s=1

Ls

( )
,

where

Is = Is1¨ � � � ¨Isks and Ls =
[
i Į s

suppw i:

Let

k̃ = min r˛N

�����L =
[r
s=1

Ls

( )
:

Let k = �k̃

r=1 kr and let I1, . . . , Ik be a relabelling of the sets I1
1, . . . , I1k1

, . . . ,

I1
k̃, . . . , I k̃kk̃ with Ir+�r–1

r¢=1 kr ¢
= Irr . For all r˛{1, . . . , k}, let Lr=

S
i Įr

suppwi. Our

relabelling is chosen such that, for all r˛{1, . . . , k}, for all i˛
S

r#rIr, and all

h˛
S

r>r Lr, hˇd (bi, p).

For any vector z˛RL, let z|Lr
be the restriction of z to Lr and let zr

be the canonical injection of z|Lr
into RL. Moreover, let L|Ir ·Lr

(b,w) [resp.

L|Ir (b,w)] be the economy L(b,w) obtained by restricting I·L to Ir·Lr

[resp. Ir].

Lemma. 3.1. For all r˛{1, . . . , k}, for all x˛X(b,w), supp xi�Lr and

p|Lr
is the unique Walras equilibrium price of the economy L|Ir ·Lr

(b,w) up

to a positive scale multiplication.

Proof. For all r˛{1, . . . , k}, for all i˛Ir, suppwi�Lr. By Proposition

3.1(i) in Ref. 7, for all x˛X(b,w), (x, p) is a Walras equilibrium. Since for

all i˛I1, d (bi, p)�L1, we have supp xi�L1. This implies that

�
i Į1

xi = �
i Į1

w i = �
i Į
w i1:

Thus, for all iˇI1, supp xi˙L1 = ;. Since for all r˛{1, . . . , k}, for all i˛Ir,

d (bi, p)�
[
r# r

Lr,
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we have by induction that, for all r˛{1, . . . , k}, for all i˛Ir,

supp xi�Lr:

Now, it is easy to check that (x|Ir · Lr
, p|Lr

) is a Walras equilibrium of

L|Ir ·Lr
(b,w). Since the only self-sufficient set in L|Ir ·Lr

(b,w) is Ir, p|Lr
is the

unique Walras equilibrium price up to a positive scale multiplication. u

The next proposition and corollary follows closely Theorem II.5 of

Ref. 1. Our proofs are straightforward adaptations of parts of Theorem II.5

and Corollary II.6 in Ref. 1. Moreover, the partition that we use will turn

out to be identical to the partition in Theorem II.5 of Ref. 1. However, this

will be established only once we have proved the following proposition.

For every r˛{1, . . . , k} and every i˛I, let

a r(i)= max
h˛Lr

bih=ph:

For every pair (r¢, r)˛{1, . . . , k}2, let

q r¢r = max
i Įr

a r¢(i)=a r(i):

This is well defined since, for every r˛{1, . . . , k} and every i˛Ir, ar(i) >0. Let

L = {l˛Rk
++jlr¢$q r¢rlr, 8(r¢, r)˛{1, . . . , k}2}:

It is easy to see that L¨{0} is a convex polyhedral cone. Moreover, if for all

(r¢, r)˛{1, . . . , k}2, qr¢r >0, then L¨{0} is closed.

Proposition 3.2. Let (b,w)˛W. Then,

P(b,w) = �
k

r=1
lrpr

���l˛L� �
:

The proof of Proposition 3.2 is based on the following claims.

Claim 3.1. Let q˛P(b,w). Then, there exists l˛R++
k such that q =

�k

r=1 lrpr.

Proof of Claim 3.1. Note first that, for all q˛P(b,w) and for all

r˛{1, . . . , k}, q|Lr
is a Walras equilibrium price of the economy L|Ir ·Lr

(b,w), which is obtained from L(b,w) by restricting I·L to Ir·Lr.

The economy L|Ir ·Lr
(c,w), with c as in Proposition 3.1, has no proper

self-sufficient subset. Thus, by Proposition 3.1, p|Lr
is the only equilibrium

price of the economy L|Ir ·Lr
(b,w) up to a positive scale multiplication.
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Therefore, qr is collinear to pr. Then, every q˛P(b,w) is of the form q =

�k

r=1 lrpr for some l˛R++
k . u

Claim 3.2. Let q˛P(b,w). Then, there exists l˛L such that q =

�k

r=1 lrpr.

Proof of Claim 3.2. Let q = �k

r=1 lrpr˛P(b,w), with l˛R++
k and lˇL.

Thus, there exists (r¢, r)˛{1, . . . , k}2 such that lr¢<qr¢rlr. Let

j˛arg max
i Įr

(a r¢(i)=a r(i)),

hr˛arg max
h˛Lr

(bjh=ph):

By Lemma 3.2, we may have chosen hr˛Lr such that, for some x˛X(b,w),

xjhr >0. Thus, since by Proposition 3.1(i) in Ref. 7, (x, q) is a Walras equili-

brium L(b,w), we have hr˛d (bj, q). Let

hr¢ ˛arg max
h˛Lr¢

(bjh=ph):

Since

bjhr¢=lr¢phr¢ >bjhr¢=q r¢rlrphr¢

and since

q r¢r = a r¢( j)=a r( j) = (bjhr¢=phr ¢)=(bjhr=phr ),

thus,

bjhr¢=lr¢phr¢ >bjhr=lrphr :

Then, hrˇd (bj, q) and thus qˇP(b,w), yielding a contradiction. u

Claim 3.3. Let l˛L and q = �k

r=1 lrpr. Then, q˛P(b,w).

Proof of Claim 3.3. Let x˛X(b,w). By Lemma 3.2, for every r˛
{1, . . . , k} and for every i˛Ir, supp xi�Lr and suppwi�Lr. Thus, for every

i˛I,

q � xi = q � w i:

It remains only to prove that, for all r˛{1, . . . , k} and for every i˛Ir,
supp xi�d (bi, q). Let r˛{1, . . . , k}, i˛Ir; and let h˛supp xi�Lr. We will prove

that h˛d (bi, q). Let h¢˛Lr. Then,

bih=ph$bih¢=ph¢,
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since (x, p) is an equilibrium and therefore,

bih=qh$bih¢=qh¢:

Let h¢˛Lr¢. Since

q r¢r$ (bih¢=ph¢)=(bih=ph)

and 0<qr¢rlr#lr¢, we have

q r¢rbih=q r¢rlrph$bih¢=lr¢ph¢,

and therefore,

bih=qh$bih¢=qh¢:

Hence,

h˛d (bi, q): u

Proof of Proposition 3.2. By Claim 3.2,

P(b,w)� �
k

r=1
lrpr

���l˛L� �
,

and by Claim 3.3,

�
k

r=1
lrpr

���l˛L� �
�P(b,w): u

Corollary 3.1. For all (r, r¢)˛{1, . . . , k}2 and for all (h, h¢)˛Lr·Lr¢, let

bhh¢= qrr¢ph=ph¢. Then,

P(b,w) = {q˛RL
++ jqh$bhh¢qh¢, 8h, h¢˛L}:

Proof. Let q˛P(b,w). Then, by the previous proposition, there exists

l˛L such that q = �k

r=1 lrpr. Let (r, r¢)˛{1, . . . , k}2 and let (h, h¢)˛Lr·Lr¢. If

r = r¢, then since qrr = 1,

bhh¢ = ph=ph¢

and thus,

qh = lrph = ( ph=ph¢)lrph¢ = bhh¢qh¢:

Thus, it remains to check that the constraints hold also for r„r¢. As l˛L,

qh = lrph$q rr¢lr¢ph = (q rr¢ph=ph¢)lr¢ph¢ = bhh¢qh¢:

For the converse, let

p˛{q˛RL
++jqh$bhh¢qh¢, 8h, h¢˛L},
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with bhh¢= qrr¢ph=ph¢ such that h˛Lr and h¢˛Lr¢. Let (h, h¢)˛Lr·Lr¢. Then, if

r = r¢, since qrr = 1,

p h$ ( ph=ph¢)p h¢, p h¢$ ( ph¢=ph)p h:

Thus,

p h¢=ph¢ = p h=ph:

Therefore, p is of the form �k

r=1 lrpr with lr = ph=ph for any h˛Lr. Now,

suppose that r„r¢. Then,

lrph = p h$ (q rr¢ph=ph¢)p h¢ = (q rr¢ph=ph¢)lr¢ph¢:

Hence,

lr$q rr¢lr¢

and therefore,

p = �
k

r=1
lrpr, with l˛L: u

Proposition 3.3. Let (b,w)˛W and let L1, . . . ,Lk be a partition of

L constructed as above with respect to p˛P(b,w). Then, the partition is

the coarsest one of L such that, for all q˛P(b,w), the function ‘q:LfiR,

defined by ‘q(h) = qh=ph for all h˛L, is measurable.

Proof. Note first that, for all r, r¢˛{1, . . . , k}, we have qr¢r#1. Thus,

(1, . . . , 1)˛L. Moreover, for all i˛
S

r#r Ir and all hˇ
S

r#r Ir, hˇd (bi, p);

thus, if r<r¢, then qr¢r<1. For all e>0 and r˛{1, . . . , k}, let le(r)˛Rk be

defined by

le
r(r) = 1 + e, for all r#r,

le
r(r) = 1, for all r>r:

For small enough e >0, le(r)˛L.

If our partition were not the coarsest, then for some r, r¢˛{1, . . . , k} with

r<r¢, all ‘q would be measurable with respect to the partition obtained from

L1, . . . ,Lk replacing Lr and Lr¢ by their union. Thus, for all small enough

e >0,

pe= �
r# r

le
r(r)pr+ �

r>r
pr˛P(b,w):

However, ‘pe is not measurable with respect to this coarser partition. u
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Therefore, the partition generated above is the same as in Theorem II.5

of Ref. 1. This proves (by Ref. 1, page 21, lines 1–3) that our partition does

not depend on the particular choice of p˛P(b,w). Reference 1 proved, using

the coarsest partition making all the above functions measurable, that the set

P(b,w) is a polyhedral cone generated by the canonical injections of the

vectors p|Lr
into RL. Not knowing P(b,w), it would be hard of course to know

the partition, which in turn we have to know to compute the set P(b,w).

4. Lower Semicontinuity of Prices

The upper and lower semicontinuity of X and the upper semicontinuity

of P has been studied in Ref. 7. We will study now, when P restricted to some

subset of W is lower semicontinuous.

Let (b̄,w̄)˛W and let (Ir)r=1
k and (Lr)r=1

k be the corresponding partition

of the economy. Let

M(b̄, w̄) = {(b,w)˛Wj8r˛{1, . . . , k}, 8i˛Ir, 8hˇLr,w ih = 0}:

Of course, (b̄,w̄)˛M(b̄,w̄). For W�W, let P:WfiR++
L be the restriction of

the equilibrium price correspondence P:Wfi R++
L to the set W.

Proposition 4.1. For each (b̄,w̄)˛W, the correspondence

P:M(b̄,w̄)fiRL
++

is lower semicontinuous at (b̄,w̄).

Proof. Suppose that the proposition is not true. Then, there exists an

open set V�RL such that P(b̄,w̄)˙V„; and, for a sequence (bn,wn)

�M(b̄,w̄), converging to (b̄,w̄) as n goes to +O, we have

P(bn,wn)˙V = ;, for every n:

We may assume p to be in the relative interior of P(b̄,w̄)˙V. By Theorem

II.5.2 of Ref. 1, L is of full dimension.3 Thus, for all r˛{1, . . . , k}, for all

small enough e >0,

p + epr˛P(b,w):

3This can be derived also from the fact that, for all small enough e>0, for all r, lr(e) as defined in

the proof of Proposition 3.3 is in L.
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Hence, for all r˛{1, . . . , k}, for all i˛Ir,

d (b̄i, p)�Lr,

since otherwise

d (b̄i, p + epr)˙Lr = ;:

Note that, for every r˛{1, . . . , k}, the economy L|Ir·Lr(b̄,w̄) has no

proper self-sufficient subset. Thus, by Proposition 3.1(iii) of Ref. 7, for every

r˛{1, . . . , k}, the equilibrium price correspondence

Pjr: (R
Lr

+ )Ir · (RLr

+ )Ir fiRLr

++

of L|Ir ·Lr
(b,w) is upper semicontinuous at (b̄,w̄) and, since it reduces to the

half line {lp|Lr
|l >0} at (b̄,w̄), it is continuous at this point. Denote by

Qr(b|Ir · Lr
,w |Ir ·Lr

) its canonical injection into RL intersected with the set

{x˛RLjkxk = kpjLr
k}:

For (b,w)˛M(b̄,w̄), let

Q(b,w) = �
k

r=1
Qr(bjIr · Lr

,w jIr · Lr
):

Note that this correspondence is continuous and single valued at (b̄,w̄).

For every n, let pn˛Q(bn,wn). So, pn converges to p. It is sufficient to

prove that pn is an equilibrium price of L(bn,wn) for all n large enough. For

all r˛{1, . . . , k}, p is an equilibrium price of L|Ir (b̄,w̄), which is the restriction

of L(b̄,w̄) to Ir·L. For all n, for all r, pn|Lr
is an equilibrium price of

L|Ir ·Lr
(bn,wn). Then, by the convergence of pn to p and the fact that, for all

r˛{1, . . . , k}, for all i˛Ir, d (b̄i, p)�Lr, there exists for all r˛{1, . . . , k} some nr
such that, for all n$nr, for all i˛Ir, d (bi

n, pn)�Lr. Thus, for all n$nr, p
n is an

equilibrium price of L|Ir(b
n,wn). Let

n̄ = max
r {̨1,... , k}

nr:

Hence, for all n$ n̄, pn is an equilibrium price of the economy L(bn,wn). This

leads to a contradiction. u

For (b̄,w̄)˛W, let

M¢(b̄,w̄) = {(b,w)˛Wj8i˛I , suppw i�suppw̄i}:

Corollary 4.1. For every (b̄,w̄)˛W, the correspondence

P:M¢(b̄,w̄)fiRL
++
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is lower semicontinuous.

Proof. For every (b̄,w̄)˛W and for every (b,w)˛M¢ (b̄,w̄),

M¢(b̄,w̄)�M(b,w):

By the previous proposition, for every (b,w)˛M¢(b̄,w̄), P:M(b,w)fiR++
L is

lower semicontinuous at (b,w) and hence also P:M¢(b̄,w̄)fiR++
L . u

Note that P:WfiR++
L is convex valued by Proposition 3.1(iii) of Ref. 7.

Therefore, P:M¢(b̄,w̄)fiR++
L admits continuous selections. This property

may come in useful in a variety of applications. For example, in Ref. 10, it

was crucial to study the approachability of hierarchic equilibria (Ref. 11) in

convex economies, by dividend equilibria of economies with discrete con-

sumption sets. Also by the above result, P is lower semicontinuous on

Ww = {b˛(RL
+)

I j(b,w)˛W}:

This could be exploited when one is interested only in changes of the utility

function (for example, if one is interested in the impact of taxes on financial

assets in the spirit of Ref. 12) or in strategic models as initiated in Ref. 13

(where agents may try to manipulate the market price by lying about their

true utility function).

The correspondence P:WfiR++
L is not lower semicontinuous. In fact,

for every (b,w)˛W and every p˛P(b,w), there exists t˛R+
LI such that, for all

m >0,

P(b,w + mt) = {lpjl>0}:

Indeed, let (Ir)r=1
k and (Lr)r=1

k as in Section 3. For every r˛{1, . . . , k}, choose

ir˛Ir and hr˛d (bir, p). Let

ti1hr = ph1
, for r˛{2, . . . , k},

ti1h = 0, otherwise:

Let tirh1
= phr for r˛{2, . . . , k}, let

tirh = 0, otherwise:

For all other i, let tih = 0 for all h˛L. One checks easily that, for all m >0,

P(b,w + mt) = {lpjl>0}:

Therefore, the lower semicontinuity of P:WfiR++
L fails at all points (b,w)

where P(b,w) is not a half line. It is straightforward to construct such

examples.
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5. Equilibrium Allocations

Once a point (x, p)˛X(b,w)·P(b,w) is known, one may use extensively

the information that we gain from the knowledge of an equilibrium point for

a characterization of the set X(b,w). To use this characterization, one needs

to know the set

G(b, p) = {(i, h)˛I ·Ljh˛d (bi, p)}:

This may be seen as a bipartite graph with vertices I¨L and an edge between

vertices (i, h)˛I·L if and only if (i, h)˛G(b, p).

For every cycle c = (i1, h1, . . . , hn, i1) of G(b, p), let tc˛RLI with tih
c = 0 if

the edge ih is not part of the cycle, otherwise tcirhr = 1=phr and tcir+1hr
= – 1=phr

for r = 1, . . . , n, in+1 = i1. Let C(b, p) be the set of cycles of G(b, p).

Proposition 5.1. Let (b,w)˛W and (x, p)˛X(b,w)·P(b,w). Then,

X (b,w)= x+ �
c˛C(b, p)

lc
t c
���lc˛R

� �
˙RLI

+ :

Proof. It is easy to check that the right-hand side is included in

X(b,w). The converse is a consequence of Lemma 4.1(i) of Ref. 7. Applying

this result, given a point x¢˛X(b,w), one may find iteratively cycles

c1, . . . , ck˛C(b, p) and weights mc1, . . . ,mck such that, for every r˛{1, . . . , k},
supp(x+�r=1

r mcrtcr – x¢) is a proper subset of supp(x +�r=1
r–1 mcrtcr – x¢),

with x+�r=1
r mcrtcr in X(b,w). Of course, in less than #(L· I ) steps, we

have

x+ �
k

r=1
mcrtcr = x¢: u

It is interesting to note that typically there exists a small number of

cycles, in G(b, p) none. More precisely, one may deduce from Proposition 4.4

of Ref. 7 that the set of economies (b,w) (̨R+
L)2I such that no cycle in G(b, p)

for p˛P(b,w) exists contains an open dense subset of (R+
L)2I.

Let us denote by Z(b,w) the elements of X(b,w) with minimal support.

Corollary 5.1. Let (b,w)˛W. Then, X(b,w) = coZ(b,w), Z(b,w) =

{x1, . . . , xk}, and r„r¢ implies supp xr„supp xr¢.

Proof. The inclusion coZ(b,w)�X(b,w) is a consequence of the con-

vexity ofX(b,w); see Proposition 3.1(ii) of Ref. 7. By the previous proposition,
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if two points are in X(b,w), then of course the line going through these

points intersected with R+
LI belongs to X(b,w). Therefore, r„r¢ implies supp

xr„supp xr¢and the extremal points of X(b,w) are its elements with minimal

support. u
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