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Abstract

We consider a linear exchange economy and its successive replicas. We study the
notion of Cournot-Walras equilibrium in which the consumers use the quantities of com-
modities put on the market as strategic variables. We prove that, generically, if the num-
ber of replications is large enough but finite, the competitive behaviour is an oligopoly
equilibrium. Then, under a mild condition, which may be interpreted in terms of market
regulation and/or market activity, we show that any sequence of oligopoly equilibria of
successive replica economies converges to the Walrasian outcome and furthermore that
every oligopoly equilibrium of large, but finite, replica is Pareto optimal. Consequently,
under the same assumptions on the fundamentals of the economy, one has an asymptotic
result on the convergence of oligopoly equilibria to the Walras equilibrium together with
a generic existence result for the Cournot-Walras equilibrium.
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1. Introduction

The incentives of price-taking behaviour are often discussed in the literature. An
ever growing literature justifies this assumption by asymptotic results, which establish

that strategic behaviour leads approximately to the competitive outcome (see, for exam-

ple, Gabszewicz and Vial 1972, Postelwaite and Roberts 1976). This kind of result is

interesting, provided the existence of a sequence of Nash equilibria can be proven under
the same assumptions. So one needs to study two questions: firstly, does an oligopoly
equilibrium converge to the competitive outcome when the number of agents increases

and secondly, does an oligopoly equilibrium exist. It is of course of crucial importance

that a positive answer to both questions can be given under the same assumptions.
There exist a large variety of approaches modelling strategic behaviour. The case

of economies where the oligopolists are the producers has been studied by Gabszewicz
and Vial (1972) Roberts, (1980), Mas-Colell (1983), Novshek and Sonnenschein (1983).

Here we will be interested in a Cournot type model, more precisely we will study the
case of exchange economies using the Cournot-Walras approach proposed by Codognato

and Gabszewicz (1991) and Gabszewicz and Michel (1997). The strategic variables of

the agents are the quantities of commodities they put on the market. In a second step

a Walras equilibrium is played with respect to the announced endowments. Taking into

account the effect of these quantities on the equilibrium price vector, each consumer tries

to improve his utility level. Agents may thus buy back part of the declared endowment
or simply not sell it.

Another Cournot type approach for exchange economies was initiated by Shapley

(1976) and Shapley and Shubik (1977). This case has already been treated by Sahi and

Yao (1989). In the Shapley-Shubik market game, agents strategies are market orders,

i.e. bids of quantities of some commodity they are willing to sell against some other
commodity. Then the price is established such that the market clears. So one may of

course loose an entire bid for an arbitrary low price. This is not the case in the Cournot-

Walras equilibrium since the final allocation of each agent is individually rational.
A more general approach has been initiated by Hurwicz (1972) and Postelwaite

and Roberts (1976) where agents strategies are the announcement of preferences or of

preferences and endowments. In a second step a Walras equilibrium is played with

respect to the announced characteristics. Allowing for such sophisticated strategies,
almost anything becomes an equilibrium unless one imposes restrictions on the type of
preferences and endowments one may announce (Otani and Sicilian 1990). The idea
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behind this is roughly the following: take an individually rational, feasible allocation

(xi) such that there exists a price p, for which for every consumer the allocation xi

is worth as much as his initial endowment at price p. Then every agent may submit

the demand function: if the price is p then I want to buy xi and otherwise I keep my
initial endowment. Imposing some continuity and consistency on the preferences one

may submit, Otani and Sicilian (1990) prove that such allocations remain an oligopoly

equilibrium.

Mathematically the Cournot-Walras model is of course equivalent to the approach of

Hurwicz (1972) and Postelwaite and Roberts (1976) by making the appropriate restric-
tions on the permitted characteristics to be declared. But, contrary to the most general
case, the set of equilibria is relatively small and under some reasonable assumptions, it

is non-empty.

We will study the oligopoly equilibria in the replica of a linear exchange economy.

Considering linear utility functions may have several justifications.

For instance, if we consider that the consumers exchange several times on the market

only a small part of their initial endowments, we can assume that their preferences are

represented by a short-term utility function, which is the first order linear differential of

the long-term utility function. This is already done in Champsaur and Cornet (1990)

and Bottazzi (1994) where during an exchange process, the infinitesimal trade at every

moment is defined as the equilibrium of a tangent linear economy.

Linear utility functions appear also naturally when we consider a financial market

where the traders can only put limit price orders on the market (See, Mertens 1996). Note

also that linear exchange economies are considered by Bottazzi and de Meyer (1999) to

study the effect of taxes on asset prices.

We will address the problem of existence of a sequence of oligopoly equilibria con-
verging to a Walras equilibrium. Most importantly, we establish conditions consistent

with the existence result under which the entire non-empty set of Nash equilibria con-

verges to a Walras equilibrium when the number of agents increases. We emphasise the

fact that the assumptions are stated in terms of the fundamentals of the economy.

Our first result is that, in large enough, but finite, replica economies, the price
taking behaviour is an oligopoly equilibrium, provided the economy is regular, which
is generically true. An important aspect of this result is that it obviously implies the

generic existence of a sequence of oligopoly equilibria converging to a Walras equilibrium.
We obtain this result by showing that the best response of each consumer is to put
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his initial endowment on the market. This is possible since in Bonnisseau, Florig and

Jofré (2001a,b), it is shown that the equilibrium price vector is Lipschitz continuous with
respect to the initial endowments. Thus, we can use the tools of nonsmooth optimization

to conclude. Nevertheless, this does not mean that the consumers do not have any
influence on the equilibrium price like in an economy with a non-atomic continuum of

agents.

Later, we give a market activity condition, consistent with our existence result,
under which every sequence of oligopoly equilibria converges to a Walras equilibrium

as the number of agents increases. Moreover, we establish that oligopoly equilibria are
Pareto optimal provided the economy is large enough. Nevertheless, this does not mean

that the convergence takes always place in a finite number of steps. Our condition is

satisfied, for example if some consumer’s strategy set is bounded away from the boundary

of the consumption set. So, if a policy maker wants to regulate this kind of markets,

it is sufficient to check that only one agent (and his replica) put a positive quantity of

each commodity on the market. This ensures Pareto optimality of the outcome on a

non-competitive large but finite market.

A list of papers establishing an asymptotic result includes Postelwaite and Roberts

(1976), Safra (1985), Otani and Sicilian (1990), Codognato and Gabszewicz (1991), Jack-

son (1992), Lahmandi-Ayed (2001), Jackson and Manelli (1997). Our convergence result

of oligopoly equilibria to the competitive outcome is not a consequence of similar known

results. Jackson and Manelli (1997) work with smooth preferences and they impose a

regularity condition on the aggregate strategies which is of course quite restrictive. In the
Cournot-Walras approach, it would imply that for any profile of declared initial endow-

ments the resulting economy is not irregular. There it seems to be very hard to exclude

this a priori. In Otani and Sicilian (1990), the demand functions must be smooth and

this does not hold here. It may be worth to note that even in a differential setting simple

strategies as in the Cournot-Walras approach results in non-smooth demands (Bonnis-
seau and Rivera 1997) and therefore Otani and Sicilian’s (1990) asymptotic result does

not encompass the Cournot-Walras approach.

Existence of a sequence of Nash equilibria converging to a Pareto optimum, when
the number of agents increases, seems to have been treated, only by Safra (1985) and Gul
and Postelwaite (1992). Gul and Postelwaite establish existence of some Nash equilibria

in an asymmetric information environment, but a crucial assumption is that the strategy
sets are finite. Safra works with standard preferences. However, in his model the payoff
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functions are not always well defined. Moreover, the initial endowment is supposed to

be in the interior of the strategy set, in order to be able to apply the implicit function
theorem. Hence, consumers may pretend to own more of some commodities than they

actually do and hence short-sales must be possible. Finally, his notion of equilibrium
does not take into account that the strategies in quantities leads to a modification of

the demand functions since in his model consumers “forget” the part of their initial

endowment they withheld. This ensures him that the demand function is still smooth. He
is then able to establish existence of almost competitive Nash equilibria, when the number

of strategic agents is large, by applying the implicit function theorem (see also Roberts

1980, Novsheck and Sonnenschein 1983). However, in the Cournot-Walras approach,
withholding part of the initial endowment leads to non-smooth demands (Bonnisseau

and Rivera 1997) which do not satisfy the strong regularity condition necessary to apply
a Lipschitz version of the implicit function theorem.

Otani and Sicilian (1982, 1990) construct a non-empty set of Nash equilibria when

the consumers’ strategy is the announcement of a demand correspondence. If consumers
are forced to submit smooth demands, then Nash equilibria converge to a Walras equi-

librium as the economy grows. Their asymptotic result can however not be coupled with

their existence result since the existence proof works precisely because the demands there
are far from being smooth.

In the following section, we present the model and we recall several results about

linear exchange economies. The results are stated in the next section together with

several examples, which show that our assumptions are in some sense minimal. The

proofs are given in Appendix.

2. The Model

We consider a linear exchange economy with a finite set L = {1, . . . , `} of com-

modities and a finite set I = {1, . . . , m} of consumers. The consumption set of the ith
consumer (i ∈ I) is RL

+ and his utility function ui : RL
+ → R is defined by ui(xi) = bi · xi

for some given vector bi ∈ RL
++

1. We denote by ω = (ωi)i∈I ∈ (RL
+)I , the vector of

initial endowments, and by L(ω), the competitive economy (bi, ωi)i∈I . We assume that

1 It would be possible to work with vectors bi on the boundary of the positive orthant, by imposing

conditions ensuring that for any “strategy”, there exists a Walras equilibrium in the resulting competitive

economy.
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∑

i∈I ωi ∈ RL
++, which means that each commodity is actually available in the economy.

Note that we do not require a strong survival assumption on the initial endowments.

This is particularly relevant here since oligopoly models implicitly suppose that some

commodities are held only by a small number of consumers.
A price is an element of RL

++. Contrary to the case of Cournot-Walras equilibria

in an economy with production (Gabszewicz and Vial 1972), the normalization does not

have any effect on the oligopoly equilibrium. In the following, we normalize the price
vectors in the simplex of RL

++, that is Σ = {p ∈ RL
++ |

∑

h∈L ph = 1}.
To study the notion of oligopoly equilibrium in the sense of Gabszewicz and Michel

(1997), we associate with each consumer i, his strategy set Si, which is a subset of RL
+,

the space of endowments. We posit the following assumption on the strategy sets.

Assumption S. For all i ∈ I,

(i) Si ⊂ {σ ∈ RL | 0 ≤ σ ≤ ωi} and ωi ∈ Si;

(ii) for every si ∈ Si, {σ ∈ RL | si ≤ σ ≤ ωi} ⊂ Si .

Assumption S(i) means that the strategy of an agent is a vector of commodities,

which is less than his initial endowments, and an agent has always the possibility to
choose his initial endowments as strategy. One may imagine that consumers might be

required to show the commodities they declare to possess. Assumption S(ii) means

that an agent can always increase his strategy as long as it remains below his initial

endowments. We can now define an economy as a collection

E = (bi, ωi, Si)i∈I .

Each agent i chooses a strategy si ∈ Si which is the initial endowments he puts on
the market. Thus, his demand with respect to the price vector p ∈ RL

++ is the solution
of the following maximization problem :















maximize bi · (ωi − si + x)

p · x ≤ p · si

x ≥ 0

The term ωi − si in the objective function means that the consumer takes into account

the part of his initial endowments he left at home. We remark that the linearity of the

utility functions implies that the solution is actually the standard demand di(p, p · si) of
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the consumer with respect to the initial endowment si. Then, the exchange among the

consumers takes place according to a Walras equilibrium of the economy L(s) where the
utility functions are the same as those of the original economy but the initial endowments

are the strategies of the consumers (si). By Gale (1976), there exists a non-empty set of

equilibrium price vectors P (s) ⊂ Σ, which need not be unique, the utility levels of the

consumers are however unique. So we do not have the problem of multiple equilibria as

in the standard approach which makes it very hard to define the Cournot-Walras game

correctly. Furthermore, a Walras equilibrium can be computed by a finite algorithm (See,

Eaves (1976)). Thus, after the market stage of the game, utility levels of the consumers

are :

Vi(s) = vi(p(s), p(s) · si) + bi · (ωi − si)

for some equilibrium price vector p(s) of L(s) and where vi is the indirect utility function,

that is vi(p, w) = w max{ bih
ph
| h ∈ L}.

An oligopoly equilibrium is a Nash equilibrium of the game where the players are

the agents of the economy, the strategy sets are the sets Si and the payoff functions are
the mappings Vi.

Definition 2.1: An oligopoly equilibrium of the economy E = (bi, ωi, Si)i∈I is a m-tuple

of strategies s ∈
∏

i∈I Si such that for all i ∈ I and for all σi ∈ Si,

Vi(s) ≥ Vi(s−i, σi)

where s−i is the (m− 1)-tuple of strategies si′ , i′ 6= i.

Of course we want to compare the outcome of a Cournot-Walras equilibrium with

the one of a Walras equilibrium: so let s be an oligopoly equilibrium and let (p, ξ) a
Walras equilibrium of the competitive economy L(s). Let x = (x1, . . . , xm) be defined

by xi = ωi − si + ξi. Then, x is an attainable allocation of the economy E and for all i,
Vi(s) = bi · xi and p · xi = p · ωi. Consequently, one obtains an attainable allocation and

there exists a price vector such that, for each consumer, his allocation is in the budget
set with respect to this price vector.

If the consumers are not strategic at all, that is Si = {ωi} for all i, then the unique
oligopoly equilibrium is the Walras equilibrium. If autarky is a feasible strategy for all

consumers, that is 0 ∈ Si for all i, then this is an oligopoly equilibrium.
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It should be noted that the present approach is quite different from the market

game literature initiated by Shapley (1976) and Shapley and Shubik (1977). Indeed, the
mechanism for the price formation at the market stage takes into account the preferences

of the consumers in the Cournot-Walras approach. Thus, the relative prices cannot be
larger than an upper bound given by the utility functions. This also means that a

consumer may buy back a commodity that he has put on the market. This is not the

case in the Shapley-Shubik model where the relative prices are computed according to
the rate between the demand and the supply. The following example illustrates this

remark. Let us consider an economy with three consumers and two goods.

Exemple 1. Let b1 = b2 = (1, 2), b3 = (2, 1), ω1 = ω2 = (α, 0), ω3 = (0, β) with

α > 2β > 0. Strategy sets are given by Si = {s ∈ R2
+ | 0 ≤ s ≤ ωi} for all i. It is

easy to check that the competitive behaviour and autarky are the only Cournot-Walras

equilibria whereas in the Shapley-Shubik market game there is a unique equilibrium -

autarky. This is of course due to the fact that in the Shapley-Shubik market game, one

may loose the entire quantity put on the market for an arbitrary low price. Only the
strategy to live in autarky ensures individual rationality of the obtained allocation. We

do not have this phenomenon with the Cournot-Walras model since individual rationality

of the obtained allocation is ensured for any strategy.

For some results of the next section, we need to know that the equilibrium price is

unique for every strategy profile. This is false for example, if autarky is feasible for each

consumer, which means that 0 ∈ Si for all i, since, for this strategy profile, any price is
an equilibrium price vector. One can impose a relatively strong condition, which says

that the strategy of a given consumer is always strictly positive, that is S̄i ⊂ RL
++. This

is in particular true, if a non strategic consumer has strictly positive initial endowments.

We now state a weaker assumption, which implies market activity for all goods and a

unique price for all strategy profiles.

Assumption U. There exists a finite family {i1, ..., in} ⊂ I and some ε > 0 such that :

(i) for all h ∈ L, there exists ν ∈ {1, . . . , n} such that siνh > ε for all siν ∈ Siν ;

(ii) for all ν ∈ {1, . . . , n− 1}, there exists h ∈ L such that siνh > ε for all siν ∈ Siν and
siν+1h > ε for all siν+1 ∈ Siν+1 .

This type of assumption is standard in the literature (see e.g. Safra 1985, Lahmandi-
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Ayed 2001).2 It excludes trivial equilibria.

This Assumption means that for all strategy profiles, for all commodities h, at least

one consumer of the family {i1, ..., in} puts a quantity of h greater than ε on the market

and the strategies are connected in the sense that a pair of successive consumers puts a
quantity greater than ε of the same commodity on the market.

One could interpret this assumption in various ways. Firstly, one could think of

some regulation of the markets. Participating at the market implies that one has to offer

at least a fixed ε > 0 out of some commodities. The assumption holds true in particular if
the closure of one strategy set is included in RL

++. So a policy maker could regulate only

one agent (and his replica) in order to ensure the validity of the subsequent propositions.

Secondly, one could think of the economy consisting of big agents with strategy
sets {si ∈ RL

+ | 0 ≤ si ≤ ωi} and a collection {i1, ..., in} ⊂ I representing n types
of consumers, each type consisting of a continuum of negligible consumers. For each

i ∈ {i1, ..., in}, all consumers within this type have the same preferences bi and their
initial endowments add up to ωi. For these consumers, the competitive behaviour is of

course always a best reply and it would be sufficient that their endowments satisfy the

above connectedness condition. Modelling these consumers explicitly as non-atomic sets

of agents would require virtually no changes apart notations.

Finally, one could think that agents behave strategically on a subset of the set of

goods (cf. Gabszewicz and Michel 1997). For example, they are strategic on markets of
goods where they are big players and competitive on the market of goods where their

size relative to other agents is very small.

We denote by U ⊂ (RL
+)I the endowments, for which there exists a unique equi-

librium price vector, that is ω′ ∈ U if the economy L(ω′) = (bi, ω′i)i∈I has a unique

normalized price vector. From Gale (1976), one deduces the following result:

Proposition 2.1. Under Assumption U,
∏

i∈I c̄oSi is included in the interior (relative

to (RL
+)I) of U .

We now recall the notion of regular initial endowments for linear exchange economies,
taken from Bonnisseau, Florig and Jofré (2001b). If the initial endowments are regular,

2 Safra (1985) assumes Si = {si ∈ RL
++ | si ≤ ω̄i} for some ω̄i >> ωi, but then for

his convergence result he considers an sequence of oligopoly equilibria, such that market
activity is ensured at the limit. For this to hold, one needs an assumption of the type

S̄i ⊂ RL
++.
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then the normalized equilibrium price vector is unique and smooth in a neighborhood.

Definition 2.2. The initial endowment ω ∈ (RL
+)I is regular, if the Walras equilibrium

price p is unique (in Σ) and if for some Walras equilibrium allocation (x1, ..., xm),

for all i = 1, ..., m, for all h ∈ δi(p), xih > 0,

where δi(p) = {h ∈ L | bih
ph

= max{ bih′
ph′

| h′ ∈ L}}.

The commodities in δi(p) are those that the ith consumer wants buy because the

marginal rate of substitution with respect to any other commodity is greater or equal to
the relative price. Thus, an economy is regular if an equilibrium allocation allows each

consumer to obtain a positive amount of each commodity he wants to buy. We denote by

Ω the set of regular initial endowments. By Bonnisseau, Florig and Jofré (2001a,b) and

Bonnisseau and Florig (2002), the set Ω is open (in (RL
+)I), dense and of full Lebesgue

measure.

We will consider replicas of the original economy to model the idea that the number

of consumers becomes large and the relative weight of each agent becomes small. For

every integer k ≥ 1, we define the economy Ek as the k-th replica of the basic economy
E . In the economy Ek, there are mk agents shared in m groups of k identical agents.

Each agent of the ith group has the same characteristics bi, ωi and Si. Similarly, we note

Lk(ω), the kth replication of the competitive economy L(ω). In the following, if y is a

vector of (RL
+)mk, we denote by ȳ the average vector of (RL

+)I defined by ȳi = 1
k

∑k
j=1 yij .

3. Existence, Optimality and Asymptotic Behavior of Oligopoly Equilibria

Our first proposition establishes the generic existence of oligopoly equilibria for large,
but finite, replica economies.

Proposition 3.1. Let E = (bi, ωi, Si)i∈I be an economy satisfying Assumption S(i). If

ω ∈ (RL
+)I is a regular initial endowment, then there exists an integer k0 such that for

every k ≥ k0 the strategy (sk
ij) defined by sk

ij = ωi for all (i, j) in I × {1, ..., k}, is an
oligopoly equilibrium of the economy Ek.

This proposition shows that, if the economy is finite, but sufficiently large and, if
the initial endowment is regular, then price taking behaviour is an oligopoly equilibrium.
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Regularity is a weak assumption, since almost all initial endowments are regular. Never-

theless, it does not mean that in a large finite economy, the agents have no power on the
equilibrium prices. Indeed, other oligopoly equilibria may exist as the following examples

show.

Example 2. Let us consider a two good-two consumer economy with b1 = (1, 0),

b2 = (0, 1), ω1 = ω2 = (1, 1) and Si = {s ∈ R2
+ | 0 ≤ s ≤ ωi}. Then, without any

replication, the competitive behaviour is an oligopoly equilibrium among an infinity of

other equilibria. In particular, autarky is not the only oligopoly equilibrium. Indeed, if

say agent 1 puts a quantity λ > 0 of good two on the market, then he obtains the entire

quantity µ of good one that agent 2 put on the market and vice versa. So the payoff

depends not on his own strategy, but on the strategy of the other consumer as long as

market activity is ensured. One easily checks that the set of allocations which may be
supported by an oligopoly equilibrium is:

{x ∈ (R2
+)2|x1 = (1 + µ, 1− λ), x2 = (1− µ, 1 + λ), (λ, µ) ∈]0, 1]2} ∪ {(ω1, ω2)}.

For the k times replicated economy with k ≥ 2 only two outcomes are supported by

oligopoly equilibria - autarky and the competitive outcome.

Example 3. In the following economy, we obtain a sequence of Cournot-Walras equi-

libria which are neither the competitive equilibrium nor the autarky equilibrium. Let us

consider the competitive economy L(ω) with two agents and two commodities defined

by b1 = (1, 1), b2 = (1, 2), ω1 = (1, 2) and ω2 = (1, 1). The unique Walras equilibrium of

this economy is p = (1, 1), x1 = (2, 1), x2 = (0, 2), thus the initial endowments are regu-

lar. We draw attention to the fact that in this case consumer 1 does not gain anything
from going to the market. Let S1 = {s ∈ R2

+ | s1 = 1, 0 ≤ s2 ≤ 2}, S2 = {ω2}, thus
only trader 1 can behave strategically. Our previous result shows that the competitive

outcome is an oligopoly equilibrium if the economy is sufficiently replicated. We now

exhibit a sequence of oligopoly equilibria, for which the outcome is different from the
Walrasian one for every finite k, and only at the limit, the Walrasian equilibrium price
is attained.

It is easy to check that, for k = 1, s1
1 = (1, 1/2), s1

2 = ω2 is an oligopoly equilibrium.

The associated price-allocation couple is, p1 = (1, 2), x1
1 = (2, 3/2), x1

2 = (0, 3/2). For

k ≥ 2 and every j ∈ {1, 2, ..., k}, sk
1j = (1, 1− 1/k), sk

2j = ω2 is an oligopoly equilibrium,
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and pk = (1 − 1/k, 1), xk
1j = (2, 1 + 1/k), xk

2j = (0, 2 − 1/k) is the associated price-

allocation couple. Note that the limit of (s̄k
1 , s̄k

2) is equal to ((1, 1), (1, 1)) which is not a

regular initial endowment with respect to the utility vectors b1 and b2. It is worth noting
that one may perturb the parameters of the example without changing the nature of the

result.

Note that the allocations (xk) are Pareto optimal. The surprising fact is that this
is not specific to the above example as the following proposition shows.

Proposition 3.2. Let E = (bi, ωi, Si)i∈I be an economy satisfying Assumptions S and U.
For every positive integer k, let sk be an oligopoly equilibrium of the economy Ek and let

pk be a corresponding equilibrium price vector. Then, there exists an integer k0 such that

for every k ≥ k0, all allocations associated with the oligopoly equilibrium sk are Pareto

optimal.

So far, we did not exclude the existence of sequences of oligopoly equilibria not

converging to the competitive outcome. Such undesirable sequences exist as shows the

following example.

Example 4. Consider a regular competitive economy L(ω) with two agents and two

commodities. Let b1 = (2, 1), b2 = (1, 2), ω1 = (0, 1) and ω2 = (1, 0). The unique Walras

equilibrium of this economy is p = (1, 1), x1 = (1, 0), x2 = (0, 1). Let Si = {s ∈ R2
+ |

0 ≤ s ≤ ωi}. For k = 1, the only oligopoly equilibrium is the no-trade equilibrium

s1 = s2 = (0, 0) and the associated allocation and prices are xi = ωi, i = 1, 2 and p for

all p ∈ R2
++. The replication of the economy does not eliminate the no-trade equilibrium.

For k = 2, the oligopoly equilibria are s11 = s12 = (0, t) and s21 = s22 = (t, 0) for any
t ∈ [0, 1/2]. The associated allocations are x1j = (t, 1 − t), j = 1, 2, x2j = (1 − t, t),

j = 1, 2 and for t > 0 the associated price is p = (1, 1). For every k ≥ 3, there are

exactly two oligopoly equilibria, the no-trade equilibrium and the competitive behaviour

sij = ωi for i = 1, 2 and j = 1, . . . , k.

The next result excludes sequences of equilibria not converging to the competitive

outcome. It plays also an important role in the proof of the previous propositions.

Proposition 3.3. Let E = (bi, ωi, Si)i∈I be an economy satisfying Assumptions S(i) and
U. For every positive integer k, let sk be an oligopoly equilibrium of the economy Ek and
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let (pk, xk) be a price vector and a feasible allocation associated with this equilibrium.

Then, the sequence (pk) converges to p(ω). Furthermore, if (jk) is a sequence such

that for all k, jk ∈ {1, . . . , k}, then (V k
ijk

(sk)) converges to vi(p(ω), p(ω) · ωi). Finally,

every cluster point of the sequence of average consumption plans (x̄k) is an equilibrium
allocation of L(ω).

If all consumers have finite strategy sets, then Proposition 3.3 implies that for all k
large enough, all oligopoly equilibria are equivalent to the Walrasian outcome.

There are several results in the literature similar to Proposition 3.3. Nevertheless,

as already stressed in the introduction, the proposition cannot be deduced from them.

Note that the strategies of the agents may not converge to ωi, since it is possible that

other strategies lead to the competitive outcome. As for the equilibrium allocations, we

cannot have a more precise result since they are not unique at equilibrium.

Without Assumption U, the asymptotic result does not hold. For example, if

0 ∈
∏

i∈I Si and if all consumers i ∈ I declare si = 0, then this is a trivial oligopoly

equilibrium and it is of course not eliminated by replication. Note that every price vector

is an equilibrium price vector if each consumer chooses the strategy 0. If the equilibrium

price is not unique, then by Bonnisseau, Florig and Jofré (2001a), there exists a non-

empty proper subset A ⊂ I, such that agents in A do not exchange anything with the

others, B = I \A. Sequences of oligopoly equilibria not converging to the Walrasian out-

come correspond therefore to a sort of generalization of the trivial oligopoly equilibrium.

The market is split into several groups and no exchanges across these groups take place.

4. Appendix

We first recall that the equilibrium price p is locally Lipschtiz continuous on the

interior of U with respect to the initial endowments. This is a consequence of Propo-

sition 2.1 (iv) in Bonnisseau, Florig and Jofré (2001a) and Bonnisseau-Florig (2002).
Under Assumption U, since

∏

i∈I c̄oSi ⊂ intU , one deduces that the mapping p is locally

Lipschitz continuous on
∏

i∈I c̄oSi. In the following, we also denote by p the exten-

sion of p to (RL)I defined by p(ω) = p(π(ω)) where π is the projection on
∏

i∈I c̄oSi.

This mapping is locally Lipschitz continuous on the whole space. Finally, one remarks

that if sk ∈
∏

i∈I(Si)k is an oligopoly equilibrium of the economy Ek and (pk, xk) are
a price vector and an attainable allocation associated with this equilibrium, then the

structure of the demand correspondence with linear utility functions implies that pk
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is a Walrasian equilibrium price vector of L(s̄k) where s̄k
i = 1

k

∑k
j=1 sk

ij for all i and
ξ̄k
i = 1

k

∑k
j=1(x

k
ij + sk

ij − ωi) for all i is an equilibrium allocation of L(s̄k).

Proof of Proposition 3.3. Let sk ∈
∏

i∈I(Si)k be an oligopoly equilibrium of the

economy Ek and let (pk, xk) be a price vector and an attainable allocation associated

with this equilibrium. Let (i, j) be an element of I × {1, . . . , k}, then we note sk
−ij the

(km−1)-tuple of strategies sk
i′j′ with (i′, j′) 6= (i, j). We note σk = (sk

−ij , σi) the element

of
∏

i∈I(Si)k such that σk
i′j′ = sk

i′j′ for all (i′, j′) 6= (i, j) and σk
ij = σi. In other words,

σk is the mk-tuple of strategies derived from sk by replacing the strategy sk
ij of the agent

ij by σi ∈ Si.
For all (i, j), let σk = (sk

−ij , ωi). One has :

vi(p(σk), p(σk) · ωi) ≤ V k
ij(s

k) = bi · xk
ij ≤ vi(pk, pk · ωi)

The first inequality comes from the fact that sk is an oligopoly equilibrium and the

second one from the fact that xk
ij belongs to the budget set defined by pk and pk · ωi.

The remainder of the proof is divided into three steps.

Step 1. The sequence (pk) converges to p(ω) the Walrasian equilibrium price vector of
L(ω).

Proof: The function vi(p(s), p(s) · ωi) is continuous on
∏

i∈I coSi, hence, uniformly

continuous. For all ε > 0, there exists ηε > 0 such that for all (s, s′) ∈ (
∏

i∈I coSi)2,
∑

i∈I ‖si − s′i‖ < ηε implies |vi(p(s), p(s) · ωi)− vi(p(s′), p(s′) · ωi)| < ε for all i.

Since the prices remain in a compact set, it suffices to prove that every converging

subsequence of (pk) (again denoted (pk)) converges to p(ω). We can assume without any

loss of generality that (x̄k) converges to x̃, an attainable allocation of L(ω).

Let ε > 0 and let kε large enough so that 1
kε

maxi∈I{‖ωi‖} < ηε. Let σk = (sk
−ij , ωi).

For all k ≥ kε,
∑

i′∈I ‖s̄k
i′ − σ̄k

i′‖ = 1
k‖ωi − sk

ij‖ ≤ 1
k‖ωi‖ < ηε. Consequently, from the

definition of ηε and the fact that pk = p(s̄k) and pk(σk) = p(s̄k
−i, s̄

k
i + 1

k (ωi − sk
ij)), one

has for all i ∈ I

|vi(p(sk
−ij , ωi), p(sk

−ij , ωi) · ωi)− vi(pk, pk · ωi)| < ε

Thus, for all k ≥ kε, bi · xk
ij ∈ [vi(pk, pk · ωi) − ε, vi(pk, pk · ωi)]. Hence bi · x̄k

i =
1
k

∑k
j=1 bi · xk

ij ∈ [vi(pk, pk · ωi) − ε, vi(pk, pk · ωi)] for all i. Since (x̄k) converges to x̃,

we obtain at the limit, bi · x̃i ∈ [vi(p̃, p̃ · ωi)− ε, vi(p̃, p̃ · ωi)] for all i where p̃ is the limit

14



of the converging subsequence (pk). Since the above inclusion is true for all ε > 0, one

deduces that bi · x̃i = vi(p̃, p̃ · ωi) for all i. Together with the fact that x̃ is an attainable

allocation of L(ω), these equalities imply that (p̃, x̃) is a Walras equilibrium of L(ω). The

uniqueness of the equilibrium price vector of L(ω) implies p̃ = p(ω) which ends the proof

of this step.

Step 2. (V k
ijk

(sk)) converges to vi(p(ω), p(ω) · ωi) and for every cluster point x̃ of the

sequence (x̄k) is an equilibrium allocation of L(ω).

Proof: Using the notation and the argument of the previous step, for all ε > 0, for

all k ≥ kε one has V k
ijk

(sk) ∈ [vi(pk, pk · ωi)− ε, vi(pk, pk · ωi)], which leads to the result
since (pk) converges to p(ω). This ends the proof of Proposition 3.3.

Proof of Proposition 3.2. We recall the notation for p ∈ RL
++,

δi(p) = {h ∈ L | bih

ph
= max{bih′

ph′
| h′ ∈ L}}

Step 1. There exists an integer k0 such that for every k ≥ k0, for every (i, j) ∈
I × {1, . . . , k} and every h /∈ δi(p(ω)), sk

ijh = ωih.

Proof: We denote by C(s̄k) the set of cluster points of the sequence (s̄k). Clearly
C(s̄k) ⊂

∏

i∈I c̄oSi. Let s̄ ∈ C(s̄k). By Proposition 3.3 and the continuity of the
mapping p , p(s̄) = limk→∞ pk = p(ω) where p(ω) denotes the unique equilibrium price

vector of the economy L(ω). Thus δi(p(ω)) = δi(p(s̄)) for all i ∈ I.

We now prove the claim for a consumer i such that there exists s̄ ∈ C(s̄k) with s̄i = 0.

We consider a subsequence of (s̄k), again denoted (s̄k), such that (s̄k
i ) converges to s̄i.

By Proposition 3.3, one has vi(p(ω), p(ω) · ωi) = limk→∞
1
k

∑k
j=1 V k

ij(s
k) = limk→∞ pk ·

s̄k
i maxh{ bih

pk
h
}+ bi · (ωi− s̄k

i ) = bi ·ωi. This implies that ωi belongs to the demand for the
price p(ω). Consequently, the support of ωi is included in δi(p(ω)) which implies that

for all si ∈ Si, the support of si is included in δi(p(ω)). Thus for all h /∈ δi(p(ω)), for all

integers k, sk
ijh = ωih = 0.

We now consider the consumers in I+ = {i ∈ I | ∀s̄ ∈ C(s̄k), s̄i 6= 0}. For all
s̄ ∈ C(s̄k), for all i ∈ I+ there exists a commodity hs̄

i ∈ L and ξ, an equilibrium

allocation of L(s̄), such that ξihs̄
i

> 0.
By the continuity of the price function in a neighbourhood of s̄ and by the lower

semi continuity of the Walras equilibrium allocation correspondence (Proposition 5.1 (i)
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in Bonnisseau, Florig and Jofré 2001a), there exists rs̄ > 0 such that B̄(s̄, rs̄) ⊂ U and

for all i,

hs̄
i ∈ δi(p(ω′)) ⊂ δi(p(s̄)) for all ω′ ⊂ B̄(s̄, rs̄). (∗)

Since C(s̄k) is compact, there exists a finite family (s̄1, . . . , s̄n) in C(s̄k) such that

C(s̄k) ⊂ ∪n
ν=1B(s̄ν , rs̄ν

2 ). From now on, we write rν and hν
i instead of rs̄ν

and hs̄ν

i . Let

ρ = min{ rν

2 | ν = 1, . . . , n}.
Let k1 be an integer large enough such that for all k ≥ k1, s̄k ∈ ∪n

ν=1B(s̄ν , rν

2 ) and
1
k‖ωi‖ < ρ for all i ∈ I+. Since for all k ≥ k1 s̄k ∈ ∪n

ν=1B(s̄ν , rν

2 ), for all (i, j), for all

σi ∈ Si, (sk
−ij , σi) belongs to B(s̄ν , rν), for some ν and hν

i ∈ δi(p(sk
−ij , σi)). Thus,

V k
ij(s

k
−ij , σi) = p(s̄k

−i, s̄
k
i +

1
k

(σi − sk
ij)) · σi

bihν
i

phν
i
(s̄k
−i, s̄

k
i + 1

k (σi − sk
ij))

+ bi · (ωi − σi).

In the following, if f is a locally Lipschitz continuous mapping, we denote by ∂f its

generalized gradient in the sense of Clarke (1983). Let h̄ /∈ δi(p(ω)). Since sk
ij is the best

response of agent ij, if sk
ijh̄ < ωih̄ for some commodity h̄, Assumption S implies that the

consumer may increase the quantity of good h̄ he puts on the market. Thus, the first

order necessary conditions imply that there exists y ∈ ∂V k
ij(s

k) such that yijh̄ ≤ 0. From
Clarke (1983), there exists (ũh) ∈

∏

h∈L ∂ph(s̄k) and w̃hν
i ∈ ∂phν

i
(s̄k) such that

yij =
(
∑

h∈L

1
k

sk
ijhũh + p(s̄k)

) bihν
i

phν
i
(s̄k)

− p(s̄k) · sk
ij

bihν
i

(phν
i
(s̄k))2

1
k

w̃hν
i − bi

=
bihν

i

kphν
i
(s̄k)

(
∑

h∈L

sk
ijhũh −

p(s̄k) · sk
ij

phν
i
(s̄k)

w̃hν
i

)

+ p(s̄k)
bihν

i

phν
i
(s̄k)

− bi

To study the sign of this expression, we first state some remarks. From condition

(*), for all ν, ω′ ∈ B̄(s̄ν , rν), for all i ∈ I+ and all h0 /∈ δi(p(ω)) = δi(p(s̄ν)),

0 < ph0(ω
′)

bihν
i

phν
i
(ω′)

− bih0

Hence there exists η > 0, such that , for all ν, ω′ ∈ B̄(s̄ν , rν), i ∈ I+ and h0 /∈ δi(p(ω)),

η ≤ ph0(ω
′)

bihν
i

phν
i
(ω′)

− bih0

Since the generalized gradient is an upper semi-continuous correspondence with

compact values, there exists a real number M > 0 such that for all ν, h0 ∈ L, i ∈ I+,
σi ∈ Si, ω′ ∈ B̄(s̄ν , rν), (uh) ∈

∏

h∈L ∂ph(ω′) and whν
i ∈ ∂phν

i
(ω′)
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bihν
i

phν
i
(ω′)

(
∑

h∈L

σihuh
h0
− p(ω′) · σi

phν
i
(ω′)

whν
i

h0

)

> −M

We now choose an integer k0 such that k0 ≥ k1 and k0 > M
η . Let k ≥ k0. Since

h̄ /∈ δi(p(ω)) = δi(p(s̄ν)) for all ν, for all i ∈ I+, for all y ∈ ∂V k
ij(s

k), one has yijh ≥
− 1

kM + η > 0. The last inequality comes from the fact that k ≥ k0 > M
η . Consequently,

from the first order necessary condition, one deduces that sk
ijh̄ = ωih̄. This ends the

proof of the first step.

Step 2. For k ≥ k0, every allocation xk associated with the oligopoly equilibrium sk is
Pareto optimal.

Proof: For k ≥ k0 and every ij in Ik, xk
ij = ωi − sk

ij + ξk
ij with ξk

ij ∈ di(pk, pk · sk
ij).

Since k ≥ k0 ≥ k1, s̄k ∈ B(s̄ν , rν

2 ) for some ν, which implies that δi(p(s̄k)) ⊂ δi(p(s̄ν)) =

δi(p(ω)). Consequently, by Step 1, for every h /∈ δi(p(ω)), xk
ijh = 0. Hence p(ω) supports

the allocation and thus, xk is a Pareto optimum of the economy Ek.

Proof of Proposition 3.1. From Bonnisseau, Florig and Jofré (2001a,b) and Bonnis-

seau and Florig (2002), since ω is a regular initial endowment, there exists r > 0 such

that for all ω′ ∈ (RL
+)I ∩ B̄(ω, r), the equilibrium price vector is unique and for all i ∈ I,

δi(p(ω′)) = δi(p(ω)).
Let ŝ be the strategy defined by ŝij = ωi for all i, j. For k large enough, for every

σi ∈ c̄oSi, the average strategy (ω−i, ωi+ 1
k (σi−ωi)) ∈ B̄(ω, r). Using the same argument

as in the first step of the proof of Proposition 3.2, one concludes that for k large enough,

the best response σ̄i of agent i, j to ŝij in c̄oSi satisfies σ̄ih = ωih for all h /∈ δi(p(ω)).

In a linear exchange economy, the equilibrium price vector does not change, if one

increases the initial endowment of the i-th consumer for commodities in δi(p), where p is

the equilibrium price vector. Thus, one deduces that p(ω−i, ωi + 1
k (σi−ωi)) = p(ω). This

implies that ωi is also a best response of agent i, j to ŝij in c̄oSi. So, since Si ⊂ c̄oSi,

ωi is also a best response of agent i, j to ŝij in Si, which shows that ŝ is an oligopoly

equilibrium.
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librium Analysis”, Journal of Economic Theory 4, 381-400.

Gale, D. (1976). “The Linear Exchange Model”, Journal of Mathematical economics 3,

205-209.

Gul, F., and Postelwaite, A. (1992). “Asymptotic Efficiency in Large Exchange Eco-
nomies with Asymmetric Information”, Econometrica 60, 1273-1292.

Jackson, M. (1992). “Incentive Compatibility and Competitive Allocations”, Economic

Letters 40, 299-302.

Jackson, M., and Manelli, A. (1997). “Approximately Competitive Equilibria in Large

18



Finite Economies”, Journal of Economic Theory 77, 354-376.

Lahmandi-Ayed, R. (2001). “Oligopoly Equilibria in Exchange Economies: a Limit
Theorem”, Economic Theory, 17, 665-674.

Mas-Colell, A. (1983). “Walrasian Equilibria as Limits of Noncooperative Equilibria.

Part I: Mixed Strategies”, Journal of Economic Theory 30, 153-170.

Mertens, J.F. (1996). “The Limit-Price Mechanism”, CORE DP9650, Université Catholi-
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